@Christoph-Hart
Do you have any advice about how to sum modulation signals?
It gets complicated when it is different types of modulation like add a bi polar LFO with midi CC1 and env. Sometimes negative amounts become positive ...
HiseSnippet 2793.3oc6b07aaibEmTRiTjiS1MMY2VzOPEJVT3EH0PT1waB5Aq3OWiF6HX40c6I2wTikHLIGVRJaqzVfdHG5s1h1CcA5g8ZuTzq8zFf1K8TWf9OPRQAJPA1hzy8P67Ao3PJJYR8UbyJcHvyLbl48dy6ieyiOlZ1XUjiC1VRt3AcrPRxyCp2wzs05sfZlR6rgj7WAXYhO.cgaaajyQ00LQmCOaaj4QmUQZsNVPGGTCIY4raSmfbwbRRRUewS9UqtFTGZph75h86PrlJ5QZFZtA8Vq52QSWeKXCzAZFBO8xU2QEatNVG2lPbYAkkrfpmBah1CRerL.I47a1PyEaW2E5hbjjysFtQm5svmaxe9C0bzNVGQanHUmrP7t2Bq2fRwzdkVukldiZ9BAGIxhVKPjjkKRtCXWsFZc6OPz7lrAJELCQ4gblvjW1PjmR+HuXHIYARJGmjtEntpslkavHT545fcLcQ1m.IhcQRg+rRxOCrNl7.ltKZ.OEskMoQ2IrvJkKe2Rj+4c+1mz1T0UCaVBatG1E8XyEd249gyUbte7bkhNzImD6XzswFqqiricX5Is8fl3BlsMNFYe2RmA0ai59fD1OrLEjLYpJmqEdPr4NlZtO1BY1OEAIOQE4u9fc1.5BoGDd8QdNKjsqFkDj2.cFQqlerTDrAx4TWrEQutmyLh1BtQacnaXUHpci2.DYPnyM5gioilam.yhWtZT8pb8WFTNwp8IkbuEnllqZq3o2LwPuDo1jld8rRuAXySNAo5FPr4.a8gCzjbrSJWiSJeYv153ig5ABPhdCgpPbyzul2vk5NdotOfR+7oR98oI0mpUh8oJmMwRjT3CM2jxG5TUW+18bL4jdqyrIihiQHVPfLyyIyupmWe5o5gPaMnoaWZiQx4AOZqGqb4T4ZZVXcnsXrg+FHvOrkMxBZiN.WSG1YAGngkNZeB+b2R7+1oFxdMcr5o85B2hSzrQW331DKR69F7XrGW4xhd.FSQjEhMrGx8br8orvzd+MQqhdV.nmEROTWGe95XCKMO+kDQNquZX8NVsvlZpzt3OAhn7YZhzenAtMY0kAxYXNP2C2fPU42BpRn9N0ftsndhU88YrnZWcV9lFb9yzxHbXMnMA1DITuCm6nqnue.frDikLLnrDCYUV53NAaMft1yCNQ6h6ezwziVoPzxaKPKBOSXxXX1xaAN2FZgcTItynJ4Jg22aKrul3iLHNRFxMUNDeFrgR8HysQKJLb51M5orN5BezDan4XQLvViYk3zSOj16X1.cAMP12h3HS3LjBS0uEYq1Uy7PppN87u7hkk1EdQ21KSZW2EYUW6Ir1Jj1bWE6RY4G11EaPLG78VJrr4CV17zkshv5lGnTNzBeGxSnTl+SY4GTVQYEhMzony4BP9CToxCdP4ku2JUprzx2+8t+87.stkM5GzFYp1YPTSHlTIDSRHlU5CWNOawKsO01SJzzkRp.TouBvsITZ+WzbW1hRWjBfZsfNBqR4gYUxy.QFkTB.oFV2IzHrKWPaQhOjgKw1w4P5npPc+Uj3FRv9n.vBAOMho304lFzQRmQQtwmQQXVN.i5AP6lH2wsXnHvQqYECbivBhaBHJvsVzerTIKxDxDWN8JS7thnL0O8.gsyKjUAP8VPBPiKyehWih4Z8K9rezp26esJ6lQlHVbXGuKJ40jLGJWuSiHNV6t2zQ7bFkV+XRQYf7LycoKSX40f5R5dOnRYgeJRCjUxe4rhn6rIuCzgRIdML9TCHCzxHe21TgLsxLjoudgLUdFxzYHSmgLcFxzYHSmgL8JDxzBfJKd+GrhzLbo++DtzoJVzklgEcFVzYXQmgEcFVzYXQmgEcFVzYXQmgEc7gEcttEV.Iba.fLO3Gqud5dI8efC5.HCzUPgeri4YD5gN+f9B1n8Xf6DWt5FXraqvEDhV0MPm.aq61Mi98qpcFdTfITnjmJTl1RkuY0q.REuhFZNvgHBfPJ6RkGuU2lA0exjQ7rARU6XjNy6xjlWKv40qA1GZ1.a3UmM7FiS9juhrtY1w7.GS.FZnKVtre9rX41G21Uyr4tPWasKnw8ZaTmDnW0+RcN92myqcYeH.0QlMXM9ujedCpPaK6Mnh+fhr6M4r60Az5VlUXyLl8sYsK8cgmgJsMhbwnd05DK8tm9F+kweo28XUWx1efMzzgb2sPKbcjg1AXSpTOnShZNMpIGjdHuaP6XG5kqtEgIicN0gtssYpj9WhVPEbTKIvxu9VRfid05N70CnXUfWzmFqqQuVvlDu55D3ILZ7K.7hd42aX85cwlX+LpH3uDQrGa1LLhgXYnG55BUOMnmuQ08Q5HnnB7uo5iHJdP6vQTRkrH8UDermWeI.mbKQMFK85QUV+5TfiT3.Ili7aBnoGjmZVBMvkbM4FnOB1AYqb3Rw9cP70AwkOzWUo.81LZ9HNwYRrYHTcxRHZlwUYiFGIL3agGRrFI0oxYjyl56bwz.8SzHPHCByALvM3jZHN4NBbR2mX.DM.fLOKrhZ1gM4FQy.aA.rUCmH4A8MoaHyC7h7QStDUFLPJ6MnvlDj39WbmctGaJcpeN0gR21xYD6PJ5E5kF7noMWTY7xEEGd1ljqf0fXo2EWd3zsbs3ysZfmtf7C302O8OVMHEAr993O5i9CqJlW.9Wk1d69mWkJ9tlWTAoHq86TUJ0aN8h0g27mu6w05cy4AT2f5.ku4OBQzMj5Ywjl7reAB.AUXmH68yrqNE167f2m3lOJau7zPvWDTusiqPFf8G94SCgdQfOLoIBuW8EO4oIPoa811mgFG7euT.uu9RAgeO.Aqb3bEer2s5iIjEIB8h9CmBGoYurrcKKGsShCB+TXlG.azXovIuzO+waZRyt.66dqWQ1K+jjIxjjhWjs4EV1DPDrH+83hL6343pe6cLIIW37RXuKL94au7qSh3FydK7duHQ5FrP34q1KgHUMQDxG+KK+28HjsgFFvA4j1IrF706hUQYz.qT.neBVYtIDbk4AMYeYaG0y6kw6c2JLbJr0xMR1Zy4a8qLD1aipNeT6swIDG+rR0u2ZUBMgKWMcdbK.3zz.c4JHzuR4yU4prO2BSYet80u2LGv82AbkQ81hppJSH2u2Pv8qxUO+uUFS9eEOsYuaWkO2678ZUi04akqVNeqLAB.mJEfQ0yaB8yLyy6Dwy6Rilm2ApPmV2t4EnP.U2NLsMGuLjn8O.J5FrrixytZDH4Y5ecCIOMTWhn29S9G+me6+9e9qWMr5hfLv6BsCgPHlzmdEi4i2VIJyqLLLed10wdMf6qLbG88fEZ3Y9QJPQp47773rd0Ynx.KBwj6Sx+UUImIoBhodZZBcvyp2z9VHpSMDl4Y9QiVUirBsXfXK9dOKl.ZRIJ+qOq4u+spNkwW12Pjd7ebGDMSYPwAn1cI3kFUgYuURcwb+7+zG99GT3K9rzfRIF0+p+rjkT8u+s23utJGyAu78zLaN3LUlexHGlGrOxA4dooJkW.LBjCm3IAT8dksoOFw.cSFfG3N+tsewSd5mLvB1sfu8YP92if+mCJcJlwEOQz7rvtSXYT2JnHQxn9mkxWUBoqSiNekROp+YR3UmhT.Bdowen3gTWhegjXuq8jWDMx+m.xznRNmF6gAT0FejWFWXUf.qGRfTS1+SyVDrKscIEoyD+dIneFcGop5+E1D+bpLDyYogXNKODy4dCwbVYHly6MDy49CbNzpC0CpAUclzQsM4nwjCvQlU5+g1IigW