@Christoph-Hart thank you the envelope follower should be a better solution!
@ustk thanks for taking the time to script these!
Thank you guys these are both great suggestions!
Christoph I am actually seeing that the envelope follower is producing more noise in the signal than the peak node. Here is an example of one arpeggiated sine wave gating another sine wave:
Screenshot 2025-01-29 at 8.00.37 AM.png
HiseSnippet 2669.3oc6Zs0aaibElx1iSrxlqa5Ef1GHL1Gj65pna9VWTDIYIkn0V1ZEcb2EAEFiHGIwHpgLjT1VaPPQequ0m2GVf92nu0e.6BzG5Oi9v9On8LyPJRJQaKqboMKVBjHwybly4aNyYNWF4l1lpDGGSaoDIOZjEQJwGgTFQc6saOrNUpdEoD2BUYnZ+Z5mSbjJOxB63PzjRjXwmvXHwJKIwe9gGWFafopj.RRRGapqR1Wefta.0lE2S2vnFVibj9fPbWnXcUS5tlFlCAvrHJijEVsOtK4.LisEPROE6zSJwuAso5NajoMIyFarcg7aWnvlE1biLcxjuS6s2rP67aUHuVgMxplWJwxU0zcMsUbwt.3SrTYSsQJ8LOiJTvw5N5sMHrWxJo.ZVPtlogFaIxnJsaOcCsl9VIGIPnMCrYKJrYOD0PWSeL8.a283CHGLivFvDKDEdKFAdYCCuLgfWLPJQHHsj.R2GonZqa4FLhXurN0kX2AC6SgghfWoE9VDRdWSfEpa5A39jZ1vKimRpMxjYc47Yxr1mkTNoLrc43JeJ1V1hZbByIQm1shtikAdTN4e+XA0k3tq4.KSJ7RpUig2UYxKPZ8osOoooiKiqKVNQ3ZBIT9Y0pUs0IUd1t6Aym6Oylsm9JOrSGhsB3mAKoU4tmD6ok.e50O3IfDBIuojSprQmolXswbtsgoVk1UmRRqZSfMYNwCa+BhpaJgMjBN2NfiNQ1ylThpO.6paRSJ+pjxrGcpAHA4NCopL5bFaBNXtsLG5Bijp65xVXJwXMA+dSi8XXphMjw.L3Lvv99LRkMGR0bRkIMemLJ28.tc6o6vX9oD8t8DPMJSVBihuIxa40D61KEdc4mCdIYWWF9+L+Q3ewoElURA9BADTCXZf214ohrkxz+wXigjTqI+H4rYxlNCWVYEFN+mG8H45zSI1t.nIvxzsmL6McP1FijwTMYGtZZOhqyfIZklOvQl0zcSgeNCo8jkWWF+7bvW+s8VWtC1vgr1mImLo7Jq.5oFD2h8U4to6.esjgQpwl0Tq1tqH10pqEd01MsCyqkMPJwGNoOqG3vEkIMa7YbqmErWxjm2NDrnWac4Ws5Q8zU6Sgywq96jykNyq8m8q89Lousf6XH64YHnFyANFnh3B46bkp6ZAv5JdB4mEmKIyGZLLWaRbJNdrKrI0F6uqD9jCCg7u3yR.DADtRHcG2xylXwPSpKP+QUjK1VnpT44Npud7IMS5AltjCYp7UIWI4qSJO4Pc5D6XrHV1lFFfLiaXg1tjIlhNbPah85P.E3.vXFgf6QyXft3LFgSnoJBfFhQSZcpt6gVD5EklSxKpKK6hGp.Vc44VtiWtEECcMhsjNjB4tnHGdk3.Ob0AROqdErK1WbfjAsYwNoxVHIpPNEJUPj5ZETEhSeWSKHq+3.9RItgP421OwF6nGW2+LTL9.RmGtPjQge4LcM2diIT7OUrGOLW.K5E8OLyJGpPts1N6NYxrMK0a.bVdlsEAHoHoX.R9GFEs7M300XKauTQPgO1PZA3aLxKi3EZIMcJdn3BSsgFX2nUbvX2a.voJRZdVlbpit6nv6Lu0JCYVg38QM0cU6EOFWHFLBNMuKvnWwa2FUExiq5F.vkP09x2CUpgD5OomGDnSlxCbCBifCFNHRUGrC+IV.VOdUtk3ufBhiXwh+YCo1ZB7mxAOvxfzBP95xsgru8Uz+ZxzAe77EKy3HkZOLENd4LOwnVdlsUYu7sJQxjtP4A15ryPfMPTz1tdniYCXtHdumg8NyaQgP03u7efGuAyxdOg2fYmXvbislvf4lXv7r2Wzav79CFDeT5.h6Yl184audeGhVIJ21gu8z47bRP4Blmwhen64zC6pbZMMMFY0yjpqxHI3veIVZ.TGfqO5fFfNBqavNknLzABdqcHUAXl20UhEOFbK3B9FHnNozfEXgCL0fgVtFVE1QFwpvfc7ikO.70gjepg5xK.pQb73ceEdTlL8iNJr2.lGviIBMokXwPw0E96r2fSyKvTyGgp6brW8YRGKRR.qMlLYr6CXFq2DMPryGA82CYKbKR6M5zfc7DuBjtvkhz6fpB92ZPmf77VdX8Oi1Ie57laW9y+zV6UezVsxkqxdlz8eYmR0J70CaMpQ9s1yg9BkLE1u09C2pUiA89pNewwe0KpV6K6ThtUizUfJFO+v7GMZupm1dmCal9n5Mp.D694lco0M+hN4GwHUtQ8F0pPpAjO6zW7hRo6nVZmdkfHX9YGXmQBYutAZvPCWcoKbyVL7z1K+Idc1XicG6FHg+zU3tEGBDi7tz0JQDfBgR0cuXfJFNNfJF4M1TsLxhf6GE.2B.fMIMefoUs2LtBMuTDMGjh8HrMzUgntNV5fy8KFahrJSRgYaoZjy8C6E4LgenvKxi7iQDn0LC.PmzwjEpCjWjU7uFoMB5.VW0I8zbNsIHN48+P6ASaWo8.7E7eCbeZnSONZkw.nvmGkVw+ZQEWhEKMsGs+127M+8Gqzmblv54QU96+1u+whHkkbcgdjjBKm+028c+6GWgzACmsmPmEJJ8tGTqfZQLHXGRDTgjj9jhu8PET95Dnh+LEp3bxP0cQdkXnn2kFDmHXpwiMoIB6dQd72TDHK60OD33Y9NLF3krFh7RYSy9Cv7JZlq11BWj8cDCdKjBr742DGubieN+c4+.9Th7SHfgg0hP1K49k+my58KaMy2u7gptf5OxFScrLch5.QFneDznmSXhOygTyl7xVr.HgouqI1N1g9gGWCVjwNGEr6PadjH+R7B0ryhW10VegUPGsuuP7GSaHK8+c2g8G.82Fo4sU7wnhNK+QUuDSbL9.jWTDepQcraXRM8K3OXWuEApYsaWRzPVwsf7B1OlxCK5GocLoOo39fmG1tAOzzbYKxds+IGhc+5W5kaheiexe3duDK9i56kXxdsQw1q8BuQ8ZOuYEx813Wc7mxJ7AYVgHgYFetnjsEoaWclygjnU8PThFqcRq17eaTA2G9GeQ2Gd4gttPTC1c.eGj.EdjNcpxImAYbanBZGhaTQHN0IMSWIO6PLq5XAswBXoYT.voSX1bLbMV.gDv83BPou9TPHwLZB.IXZ6tGYz02PFcgXQHZ6QMaOo.jKNk.tmm.fxtaaV17btHd.Rg7xgraZaL4YawDBF2FIhszBS6Rt96mqfT5A8fZPlOuoagpRwfq9Q5jKB5KIl7Chn6lrZMXB3gH+3egFXrjXQ303MA+qPY2Lc7OWCccLT3jJjsMNcwxCEQWc9zxkfO1Y2zoa5zjSX100CP6Sncc6MaZpOWSrmNcZN0p5xbgtOxK8nBTsFu2zK2CJVg7KPGNz0Zn6aAQceTilUUX+5mdBK5xd1DxcYBoJUaJQbuYzsbYzSMMzhwk9Gy8Cj6m5G3Muefkls8sK+ulq2i8F7VGuyeeBucfxb0yvBWVOCKNUOCum+M.ktreCvDS8a.N.qZadhpHJG6TvM4T.KFkeodqfZvdWN6zw2F.UOehpZTQM0DyMuSL+7NwBy6D2Xdm3ly6D2Zdm31W8DYM2TZnqo3uEO1UO2rp3N9SHJihetR5+B3gvR6H