Has the modulation system been "fixed" ?
-
okay, actually the above was correct env with unipolar Lfo's. Here is one with bi-polar Lfo's:
HiseSnippet 13224.3oc68sEiiikddRU0GUkTee5cm0HHdWkAAI8ryz0nCuyc239R0cOSC2cO01ZlNCv5EcXKQUEmRhTqHqp6xSFi.j.jmR7CFvIOjDjWBBxKA4g7PdXQ1IKBLVjX3rIFAH9I6bAANvvva.hgCLbvjygGRQRIJwK5PJRUrdXlVhTmy+++4x+2467eN+GLwnmpoowjZ0a9QmMVsV8KA5dlt0Q6ejhldsGc+Z0uFvr2DswV5F8Uewov90t2YiULMU6Wqd8see7aUu4Ep4728TFpn2S0+W8bCsdpOVajlk22dvc9E0FN7gJ8U+HsQ9dat67ndF56aLz3DjDsMnSswJ8NV4P0mpfess.0p23A80rLlz0RwR0rV8KbOi9m08HiWoSd+mqYp8xgp3O.q0EUPju9gFC6ikX72Va+izF1+.WM2rFpPOvyNrMwN7U.OQqu1zu2u8.+f1d+B+1i5aET71Nf3A8Kdc7IdgHRa6Sjt.QjtNnqcKg2SvxyEAOR2Rcx.EjY2unPd2Z0+Bv9FnWP2ZuQJGq9vInOL8GbSgNcd21n+ya+sGbhdOKMC81F5O0vR8C0u4a25yZ0r0m2p8rOZvfPeFtZlXLbn5jPeLtkdxx9g2T+jQuTcx619TkgmnN8EQpePaJXw1T+M48HZsuWzP+Q5ZVe3XU8E0QnlioB8u93GceEKETCQcmuC8diUmXogEg52W8TTuZRyRSv8UMO1xXLpecLayZBND0c5IF8CqEaqq+lSaxLUs9.UsCOx5lr3FoK25xsP5koExFMosSY7XkyTm.a+Wos8.28NT05ACFn1y5luUfW3s7+ycdxuntwKMQ+xu2229Y9+1uWmuO5AtxgRe6u8lukp9o2cjwI5Vu061Fx24ah593HWA9wvP+wO9geHLvuF57qC7aYVzukIvukIreK6h9srA9srg8a4B82t+9vYUXXm4+w7K5GOmBG1uVHze8yUGZzSy5rYU6vJAwPKgmon22XzrpNzsqzkaMvXR6apg9oc91s0Z+cZKg9euy671Wt0mc4VsQ+EnNz9939i27sFg7DfJs25.Ec6NUK9E0zQu2sf6Qpvlg+RJuFKZK8cLsTG2U6WFWqc1qCD+he9b84jB0DbWKKjKj25cIscLgX5jBHstke3uBQV6zYYEii0AOe2asjJqe+gpGXXpgmDD89nw26E1HI4P0p6q1S4LhRACUojiVojigRIOiR8XMcUkI1p068dKnBiohACeBltmXZofEZRm8vzMzubFkaYuSftWy9VgOO0yTGppXpRjA1vkAXzFXu2YIVXuWJRSru5Lt13vmK8CPnglNhfODYhIFFXlvUtYesvmQF+NtSK4zINL4fMFxA6BZnsmZqWaM8.yMglZqYO7OvAzw9JCG9RzDD2zP2+q47TRI8deyK2RSeHpcwOpkodBcguzyXzX7Wa4hfwdVzlZCto8Ga+KflkEW83urY.WyX4AMO0DsWdhk5Mm4QuRyp2QPOsOA+1wFlOvUJcEJ6R.IxlFCU2a7DMcKh38Mc7JzDMwZS0glpscD0k7toSQfIWQzUOzmh7DEDLGkWZRDl29s+1MwEFRt+baYxsy1g3FYmlD+.Wd6va9ms8DKhey2i3lb9V+P5rrnN.Hm3JCQ8C6q9ZzPA++v8r+xObf2uzwpRrUHOy3mOsOy68dHYD+O5glbpcmuE9eNe2qljWd05hQiNYKsWlc6E5+51SqYb5qsZ81nW+M6RyUIv++WNQU43uMoMZ3.C3zFI3JzHAkbPoFw6wDzp6ytNsZ+NIqVgwnVQ3Hu4rFF+RfqIYpQgYpQgYULJxwynvQWihb7LJ7Kwn3zkwqqxTKC6TKC6JXYX5DOKi.UsL3ZMNVFwkZYByvfV6zT6B2pXWfwytHQW6BLd1E4XNLxmUwyrvuJlEl3YVfcnqcgId1EHb4CkBuOyoNqXdpERXUrPrwzBQ2IfwUarrPrIdH0Da5.lZbDWEiCWLMNzchXb0FKiCehFW4YhTroKn4TajDwFsLQhepFtfdk8wKV2qHkitHEhpHMIqR1qPgchtTEipTmPV2quREFcoJEUodDZ0l9JRlnKR4nJxCCp6rQVjvEaQ+bGtjt77DceNmC75WwQpPupkMa1WwgM6tC05qNolVe71OLcgS0rEZ+68SsXT.WB3QK7JTBLqbIvtJkvEASIJNshfGYwoqDtFHHgwoqTtBvOowoqL1EPXcMc+5c.1raltebSfCAho8m6v8W594M.Xp0RaG.ORwBoDRy9QgG.6Pr.pQIVCgeMZtk5356L2+QPxF8KSi7u2u+rej4ICFn8Z7zJOtFlLSTA.NPQGq7wPHBLMfsT7qutjBF+Rw6VeMIEr9khe7ZPJ7OkVvtE8ySSguoEC1sHGkh4lZMXWibTRlY54fcNntbzL5o3C1y3mf9GtaVmSkcm+q+x+stsSc+Yek+4uu8GUP+rlMt1eYWIKTY9KlbGhf0.XGlHwyB459HXmkexRqljKx9kEPL7FErCyhLSwSC8bREr4OK0wFQ4yKX+f+zE0OHMVw.dFC1rtn5I1QhwtfwJKLPL9+sE38dOu3s3.igmM9HCcsdjW3geRnQcg2q0l7dsQun8944UTjJcwQtg+ma+SmaGzPuwa8tcdWGtweu26UGop2FMb4jgJNKon8sZ26Dq1FCFfVJD9+4+0vedvLugd3a0AplhXGNBRa+a8X0AVeq2p86DFu4y7pOCGaK32c1EqSBZ.6eheaQvU0E3ICwwhlib09Wncm12tMDofjO+sbXMHlk0D+k02wordmYJqkueS31mErSSdFTb4TsnyfK5rdLvJCviZoEH45wZRWRUlEvimeppqAdBYfbv3N78I7a3LBOvLV3H5SGIBm4qFuM0BFw3JhWGb.dW2BWF2JDYD0RkExnSHbdY.Y5TOA7BfG9IYS7Z5u52kT8+4.u+PiWpLzyPg5ShjDUhmmedmG2d5yaO8EfKIHa+o2NlAY63XGjs02dYAUKLkAU6EJbAUab6Gei4ZZLywQa02wmX1fHl+4clPB2R9bkIZJ5VSkMaQtg8xmiVJum1XigJS7Gfv+2.d9DFOQcrxD0Ox3fgJmcSSkQiGp9Lj97tsI+ayCTmbOzJgNdd2IiIBs8Su4KQS1oNYgNxntOtn7jAhcaCb48f7BP3mpZ8JiIGiavp67uQ8pvsE.baQs6NbnwqvtVzblKDYxs+NO7g3uh7FpnNe55pCc.4h7srk8jiOk3n3gJ8PR+YGfvHgmksm67D60aZeVRk509ike7u1cbNwaEp1FY6nCGJ8aietoupAWNWBf7RI8hWhaFqEndeSe0qu2Y0qxqCd0DkwFl8PSWg6PCCVu2vW8pa7BjCWsTVo0CnmdUXs4ruST2y2iSVsgaQGp9ZWjH2WybLZvz8rGQXN22f97ivQ4C14zsPyidfxDkQpVpNmKA2Ogppmno+bBhG.nydcp8DkWO8ybnO2c55f..D5YmoEdBVke9LHktSMeEbCuBtAtfY7UxM.vNAJ5uB5Mri0OzePN4NPn.ZDywpuhXBIu.CirbGNdAFFVNIQIdmyovCmn9CNQUu2Ydxye2e7e7O4O9l+l2t1hTTX.EEINBKPSujcw29Y3wZypu+rEW9yZHgKzP99noNpE387WnWHpBEWH6.N3H7x1C7hItTZXCDbVQwCnav9PAdR85NeB4SXKhU6QlOG+zdJCcKQzTO9FmrCXrpxwyLj7hjgH3mjrAGWfdCNBpxdXN+HkInUhQayPSfo1gLHb6AMDWALButU2m428aDVhsBLPudx6JQ9pY5JQ0dA2yv33QJ1t3V4iCShvwvTgioBGSENlJbLkFbL27W5W8O8l+RaemrAGy7vMpvvTggoBCSQFCCaEFlJLLUXXpvvr.LLj2qXfeA+tBLjBSRlqifrfPsJnLUPY1XfxDCaw4LvLslt+Wn4v87n63+Z+8S1dI8wlpejhsWau8j7Q5mhjG7u2667pnmZiNvew0cjgg0QA2qRs6be0AJmLzZ1U9kjMNFF6MEbYFkF1QhXNaU9KcmBfUwY+raMMHHssGe0oezaaRyFyy8U6o8R0g1dOyZccGhttqSXV5rcvjOPS8jTh1es83XxTPYfBk530X6M6303YFmXooe3STrlfiJG.ZjWWjqgdtn+McA9674NtNM5pp229CeI5OmGBwettyCgtOzuJdEhJdQPWD1Y6v8yVAeS6O29upxopseeUDp546c4O5O93c9OR+n+3C6Ygp9OZhhtIB3efBtq5HsOxPGao89RT2YLtNBrt.yhoLIzG8yt8CQJYn+ltJVmLwtqm6ps70UqJpTJJA.lM.kYtn.uFpqKF73Czwm5Vz2fkw2.33Yx8aC1W9IF5FtK212bgpnwfGdXPz.gpPNwbtuuwMRnm9U+MtC4BzIn2hDYKfw2Vrr1qeNmPjuMd.X6xaf6sY6HHvDBN1nq.v7B4Fj21BvU.9CP3PunE+FfvXAacQ700vB7K5N8p6r1b7cgqlvHFKNrfsSLXAaNIH3xwvZtuUDYKNKeIZtyriZ8mRizEcjGbE1BfVzGo9CHdeEeh2z2HnvLsZZ.T5aNwqp1ZdwLrUR5IPMIBTCxZBUNxtz7KMWCeZ6rmabOxSSxpT8YB.KcEjWECnwmb6trT6VwZcsucbltzbjV56KbVSotpcWY66hTuOh5cgkvG0mXpPfclVIOpu2pfiZEy0BsD2En95wS36PyxrocYB6j1BcoVlZIk+js7yexCPq0qOp4b5B.BR33tgyM3rxYSfMOfImcPnrnfHTPBJvwvyxv5bdXb7wd2SrLFoXMEIU5Xr6MwOuiqnvIxIKxwCsqoK6TSOVEMZXwL4kaZt64FaIJdtIKNmopLuMv67oUDzZuy0FMUbYxehhBbRL7RLA57s+ISNM.mc7zmaZah.CiPTedJblKMfihVDxLQOHstHnDkly0Z3mTSeJA.L5jggpC3uubnCMr4WmNzq6SKtPHs+0qO6Whogvws0UAZ5iOw5EVFGd3P0Y7xtKQoPdPzwDH4nSwv+X1P1e.DO8PifmAwykHcBHOY81MXIryGnS.FyvrcBrUB6GjZcvOhsslAwVCv991dvqfE8Atmewohp6KicV8xSNz8sCNIIUGnDvrfFGCK4CvIafFS4XDNSwaD9rhcHgk.ZYu64+k7LYuIXrgYaiIs0UOrs6xfZEoI2+B+RpY11yJe3f+SlwMP+zsWUTB6.dD1DsLnNwp++TeATpfXV9HIJsItMHQhf6pwgoeA6bfCImUO6dbvV3jbQaCqiTmP9Fy1C0Pei0QZlsuErskQaXKecnV1R4q6SVuBNTbfBj3rYFw8qELXbbeqHl6vOER96fmViJ90urOI9RNFlWL2tj6DTM9dLMmyaqnFLxD4fwNQOXbIUxN1UhXhFx2.bKX1NgZ.OaKYFikDOM3oLvk9b656R.xXauWGKqv6fu6a4hdr6mJn4HTFLw.9QTwspG4d4M3iVtgshHkBAW5qJgbz4VJRJ10ORpVfWR1rcQZ3lOGvP4SfCgGcL7ImmmVS31qFXTljsbyEM44BALsZisBsbVfLPJntHukpwNBD4CTJL3Iimg8JA1NxLxhBRcj34DkEcpl2WYzHkkEHf95BrKYgxvXuRYuQ5q83XK3NbX6qMddXnqNrzl7T3ZgktqrM2ctDuXhLEfR2JHyEKFVSi4c+WqVXt+6F7J6hDJH9FjENPg4w8DX.k855i0B68C3NpHjM0NijJaNijRlynXOXNSbFwrY3Lx4MW2dil0hGGRcxKnI.rKlxN+MKoGQBIvI5RJQL3jIz4vFC5bl183ZAHvgo0hllYoT03m3iK6i3CXgh4CNZzMNRlOj13Y9HhYybr0IDSJUNrqgw5wJBKkKlvRoqhjAbd.OWhKMgGXqb.XpbYCXpbJAltMsAldk.vjpHIImHIgYifjDo0hCIZSRBeR8FsUA0aDy4XuQhI1azVz1azEcmbG1oj3NxuDWPHJIF9ip3IglNjlwfWjnIwdQOrU7jjQ7jPKpQ3RejtDjnD1VKchknoFgoPQMhXtPMh74.pQXhjZjMisqSXSAIJ64XjnBEIjnvRGRTXwbK6XqnFImnFgcifZD4MBGRhaJNj3NG6PRpH4Phoz4PhoL4PphajrKFRXKdjiHUQNRAmbDdZQNBWbIGo4BHGgsPQNhblSNh88tQwxaSVvMBajbiHWxOC91HQk1HNitxEsynKWY4T36r3PtR9wv2cZoxz4vuSdcN7kK4iwIwq+r6kZQcPdg+f3yUnvaaSqCc1Y+pScelA2VH8goMeqDrR9ngayUTfaS53ByX71QbmzkrSBewFwMejr+BK6W6U6Xes3zYyveLrn4OlujA5lei.zMrBz8LftIixgaFixYJGixK7nt4yTT2UPey1LIzLvgESObXA5BGluXAGlMWneVXym94X.Flci.LLylgaR1hlaRgRFXXgMBvvBU2DrgBFlcyXTNW4XTdgGLrPAjBZtJJnKzTPKkdL2hzEysPwByMetf4VbyGysPzXt42HvbysY3Mlun4MVrjg4Vr7h4dGOL2ynEWELdhwmp1yZOxCoXpDKmWPAdnJ+lwPUgxwP0BOvYwBHvYgJfyEKfy6DD3LSR.Necf4IiZOxMueZ1Jx4Oi68t2EmM9YEVHVpoRy2AXLXfopUqV8Nwpsgd6WcjpdacCWAD0oj7jACHOx22GwUi95LtasSyHQp7WAm8GaqXmTMakn65vbOYdgk6XnOCGX.cUHJ27P0Snm80iQj5SCr9vTv0CoXpGrEW8vMBAighzqGL1cr1J+W6EVOXhod.Wv4iL6FtmfigKjKZs3h.bNapml0YsxcUIYMIwvQza.lnn22XTaTwf7+XoVj0ILr5LXswAPmj5qTxhvQGJpaQR9hRt1fjkiyXpouvxOI0azWSBYCU0xI9vIl7rY9By3XLE0LN1tycYNHDGegiUnNVd5mvolNPMla+aBt4Ni+1+dMBUAseGx9+1tXDMjNYaiBPzB2DLRSejxq4KI2UBtx6LqE4ZScGQdbV6MZGO5dNzlNg.VObJrFMc1BLd6hz1NyZ+RXR.+F.983XXXD6HJxIwAQS0OS21FYv8qPiDoD3OuHoVVTlWpCCTzIykiJXsQmLp1rkdNU6Ju1es6h1OTeug1zDXu05DhuXFI4N3DnNGuDDxIv3joywulasFl3kXN0PEIxB3WQfqdFYuE3.LBOzpVh45g7lTIICRytKd7cAudfRej9SaHiMx1KwjEWNyMhY99rwsblsuObMz2e9ZMk816rF5sOs20B5r67zTuDykA14pfmdxHecImhhgYNfNM.OwGtncAOFA+EsrsZceklUui7EbE9+B7.q8Mz0U6gGXYF7inVoYgQrfXcNxQUqRcxkx5LaP4EV.2O+tLKS6cYdq7kwKOaeQBFFrBFVELry4vvxr7S1k8SnR73Sgl74XG5GVZgwBoCKR1OdUqxsBTkGN+VE6rH8CWA9p1ZgzN1H6mdhz8zdhw3MEyrcP2EfqyjIH3WfsCrCK5Ejkk3jE6.qQ3Gr6HCCqizzOz65k7K+xu7B0p8W7N0xeKyk.OS0T0JYa9Cw0SUujpdIwkI8Ueh4.cN9K32+Dg76wFlOP+z6ZGWAQBENvCiG3a.d53UE38ToUW8vDKs6.tkjPrkW6K8IHkD3qBd7C+P3AFlISh81IoDHyLTUlep5gYWeBmz.NEkWl7wFyQUYNw13TIy7zTlYSrcNw8KDnp7lXa7N3G1gKIRrH0lda+8gYuAVhlha1OOgL05OfD2r075dCEQSANSMvtW1JzQfuA34NAsTNXkYntPmCVZZ4y65fmYGQU4fclixhbNXkokGuKhCehOzNFpiuG5+rekO8G9C+O76d63NCmcrbSG4sIvzlcbXbk1uJ3VnERIIi+ShWPlSRhmc4l5EbhPlaJDxQHHorWsPUhgxPjVfZvjwpAaRUie1simZrrLTI00BNJNzMdIRBpqB7wWEfoTE3xXUPH6aE3yXUPL6UAgLVEjxdUPLiTgsA2MPtXAUH92Yjl1Dy0wSCtA.JHJuG1WAqL4ukqOM7cT2Npu4jYO0f20xRo2wKQQ7DgDRNHTVTPDJHAE3X3YYXCS4uerp349hUPiwQPXOkyVWJb231UEWfhLbc78GLl8bCUuaB5dhIdyWRPe12zdY3t5MmHmrHGOLL05YIocbW.iLyJ1L1D7L0gpJlpqqFxOXIU7N.ne8MFtuVtx1.7AFC6udzT.3.E8nSWTdPlF+F+M+h+c6e63tVARTTGA16FXLx7yr4.7A2jVxt6L78SVWbxt8lpU4fkbJr.XGAexpH36.tEK6dLIRzS8xfSw9ebOCiiGoL4X79m7wOxMhiQBmkptkuBrd86qdpVO0O5rw18puup4wVFisqzdpll3tsWf7vqf2e8y51ah1XqG9I0Hb0f2AumXz+wJmoNI3wOi7h0p+M.sGbhtsEosg99j3e4lucqOqUyVedq1Hs7A80PCO5ZoXgEnsumQ+yvGYXcxFp8bMSsWNz4tGqqwPCmfPe+izF1epTZZuQg1ZGd6GUsdkgsxWuty+d55wwR7KHBmNdWJu6vgFuBqYiOxPWqGodr+Rb3ZqQBnFrBQ9n59GofZgG5rZ95.jw1aew2Yga+N4DbDtHPwqahoaTeKemq6VSOkIoOCXgWxNZVRupJrS0cbuYjbmyclfiRUGe7+FqtG4ooL7WAKc7xBhHPRyXRC1usWL6FokcwETh1mGDJVht2C2YP3Hl3i4vV9OlCOXzKU6iZns+031yfak6twa60om6YRPI5fYeI60OXkA4QBhHRM8XUzHgEG8u4ll6hcOcA4.ckEGLYYdafGt8hfV6A6llJtyBYEEwQ6GuDSfNe6exjSCD2F7qdv4gCVFqYCFjHhEXm4QSXxad6hUZOlDHHIL0MWvzgF1GGuDm5h2l1ot3kR9dw8lSaGRLsm7bo91EobotCFj04gUsHdWE6D3Tk6A3j6+AlxwH7B+EtFLVW3ZSMTuINXDaaLost5gscWBTht6lRWBqlu5NXqPe4ECS+h0uZfqx3vnOHLJCtrOw3R9t6hyyqt3sipWKCMRpcQdyEmQ0xtAuEDi59Qt9Vw89mvavjWj.3e4Edu4CPZmpooMa.3UWWrudk6DYF0lYsb6JGVqwJlUsK6I0jl.SsCYla5hqPzC2mkpqPlsV3rsATqFK+RIJMiVBAlr2OYdDTquL5xtycoYwjhIWVUyU1M4RzW.WLQcAbs52dQ0RZiwRCyp4WvZdLe+BArsSNO5w27J9OuNgNLdUMBgbAh48vHp6euaOecW6Nwpt+G+q04+wsC4VEyWcO+QeGVx4IvEZyhbKmkd.1Iq55Dq9vy5Qurm.iZ45QGdtzkty0Pu3h8omJM+BqjGkot6fkP26tazGn9Wh9K3N8Q9tf97CyMOrj5lmoxM+Z0M+Opn3le1NKEojy.4VYuLRKHHtqMOLpAqu07NBRy59WmrExl9TcFSqH6fEEcg9S0YvBEegb4RlNKpbXLRNWY1BkpXKLB1BgQxVH2lBagbaJqsf8bLcgvBDcgbmynKjq.tNhkcbFqXKrhsvPXKjozmBzIPapXKjeSwiNy4XO5hEHO5rmy7nyVN8nWQLXEwfNYjm.8UxadA2JJlTXyXlTZ5NP97NAj2game+ezpT1LKkbSbO9rmORtzG8hAYmjsULSVrKhORljwG4pEbyQxGoXtvGIWNvGobEejQvGISj7QJtVNcSY.ejBk7S.wzUuvcNd0KBqsC.xtINmetos5E9BebMvlFBIocSR0xWJ3DRxtQD9hxUDRNTbSwkN+4XW5REHW5BmyboKTRcoyT4RuhQx4CUQ1TPIY1kyRsW9rz4cpB+q8O76+6e6Lhpv67cexe3syCpB4oEUgb9nJbq3dWj4mpP17jpvHIbWNWnJrfkYyyBd3XijGN4R9sLjSFNYS3VHQtncKjvUVtmgbVANWoeE3jokJS2zPcxqaZH4R9XbmCUWmxwf7B+UMDWgBSNg6rNU2qPE56UHgzeRg3W30RUpfayUTfaS53ByE71vMc71tq67Z2IBR1K6Wsmt48tMBOxvhlGY9RFra9MBX2vJX2y.61MYQtQLJmobLJuvi6lOSwcWA9ME6rEASQQ3VOKafsKldX6BzE1NewB1Nat.aWXymlb9niKF1MBH6LaFNyYKZNyEJYP1E1HfrKTcm7GJjc1MiQ4bkiQ4EdH6BEPpx4pnJuPSUtT5wbKRWL2BEKL274BlawMeL2BQi4lei.yM2lg2X9hl2XwRFlawxKl6c7vbOiVbUv3IFepZOq8HOL5D5ZQcAE3gp7aFCUEJGCUK7.mEKf.mEp.NWr.NuSPfyLIA370AlmLp8HRatwDyVQN+YbuhZaMab9JrPrTSklcAFCFXh5ykfDvVtGsu1ousHUkqfyn1sUryT4sZUfUHx8NcLzmgCLftJTRtzhWKWKB12YNQpTMvJESYPYjhoxvR8dZzUYbCSwXnM85AKxiab2yy3oIP5nIfTf6bgGxtkpXbQqXWDfyWl8zrNq32NECmOuAXhhdeiQsQESacCK0hsVgASyu1txC2w6zRcHFPQ.Hg3DNN56V.hvcQfg6LqcHgor8a.32iiggQrinHmDGjsib1gNml7adYv.sWCEdwKQCblIqd+07ATy+Kk1KZNWfX0C3Kwt0JrdMGN+Q8KkW2oaG9QnMqZ2cSw8HweIv1ar3Qg6Bv0YxDD7Kv1A1gE8BxxRbxhcf0H3v6Nxvv5HM8C8l.9K+xe0e6eyK88tSs72xbIvyTQHpijIhUtSdft.ec+y+QtfEGaX9.8SuqM9wHWeXfGVu99F55p8vy+XKPdeDU5d4OELKIgtzz3uZzoRqt5gIVZ2AbKIgXKuNIub5HvWE73G9gvCLLSlD6AMHAxLCUk4mpdX10mvIUvQQ4kIerwbTUlSrMNUxLOMkY17wNKPUYNeryhTaRt82O4SYrC9gH3zIPfkno.m8yWHSs9DHwM4F3jHutmBFZJvYpA1Mf9oi.eCvycV.ZNXkYntPmCVZZ4665fmYu13bvNyQYQNGrxzxy2krWcVRcg7O5O5e5uweve++m2NtSwYSEOcD3l.yWoY06HXbk1uJ3Vn0MIIi+ShWPlSRhmc415ErgdyMGBYGfR5tGsPUhghcW.wJYkRcUfMKTgkkUEntFvk8MBrYrJvm8p.WFqBBYuJvmwpfX1qBBYrJHk8pfXFoBaCtquBog8JH7etur4eqimFbC.TPTdOrOBVYxeKWeZ3KBENpu4jYC1i6ZYoz63knHdhPB4.DJKJHBEjfBbL7rLrgo72OVU7bewJnw3H+umxYqKEtab6phKPQFtN99CFydtgp2MAcOwDSgdB5y9l3m2wUu4D4jE43ggoVOKIsi6BXjYVwlwlfmoNTUwTcc0P9AKoh2A.8quDy5JnrM.efwv94jllT9ssOt62yv33QJSNFyP9G+H2sYBogVp5V9Jx50uu5oZ8T+nyFaK12W07XKiw1UaOUSSrbcAxCuB3.igm0s2DswVO7SpQX43nwCdhQ+Gqbl5DXfahVx6Uq92.zdvI51V01F56SBIra91s9rVMa84sZiLcOnuFR86ZoXgkmsumQ+yvQxiNYeQdtlo1KG5bjf5ZLzvQA2+Hsg8mJjl162isxg26QUqWYXq60q67uc5lbMr.+Bhroi2po6Nbnwqv503iLz05QpF6uDuCcZjMRDqOjOpt+QJnNICcV2ScP8sr2PUmssJj6wWxdjQhjoPkfniAznBMtYhhocHWtvSiepTeoYhW9Epmu6dmY2.DqPrZtio.vYyssGIEPdtFNziTGh5OtG4oIYW8pCV5fiqBd5Ii7IstiUsayp00FohuCyf+uXdRN2dwqPMsTDsfRz9D4QwRboWmPQVjK0pj3swdK+ai8CF8R09ntV1+54uhm2Md6HJ8lpkDLjN3uh28xaJcXS1ccRM8XUT++ZKj6hbSycwgkt8kltxhi+0LuMvCCVQPq8fPQSE2YQIhhBbRL7RLA57s+ISNMvVsym1JyK7fvw2f0r6eeHgpybwMXRumuhguwbO9Tw6qexNUDEJs.PZLriJKpDtVq5Yg.VVN1R6PN1RI9TKkeM+w6n83f+HgWU.wRKJsWV.foWqtPpj7sy6Azj.vjoHOhtXc5l.ye5lfw5zMM0P8l3XHqswj15pG11cINQeTDRY9sfu5XNUnue.foeQ3WMvsE.LY43VfyN05c7+SzsCPljsJXhruZmZw4DcDchmUrJwyFwsJPmHS3ELaJId1x9c4US2rTGsSRcaUdRRcrq+jTWbS97k+bTGfzqyUcoVJpipIlNlzjqYo8b7UIltBdtlEV5WUtKflprMKKUVAdROkzYP1lEdN1QNWAJayBOe3I2m9VlbkyT4J+beNlMD13XRwcMDsuggHWFImySrr1cAxnDKqSYm8zywl9quSlDc8xDJ+b9u9NgE.B5R1kM6pPPmTEAcQPPGbAKJ.LkfNtXRPWAkVNN5Bmeq0Fbdlyav48syhvbdmEmGDOyFOH9FA.wyPOP795vsZv4W1osJdDykkIXmJz7EPh4X1PHlShlDysU4jXN9MEO4rmi8jKt18jydNySNa4zSNSkm7Jd4HGAr.8UV+zx4be5dNmWtuX2+5+zLiWNye97gWNtzG1bAYoisUJhaN+7xwT.3kSL23kSthWtH3kiIx.mSjJ7xstuMusu141Pv0ycNdC2EJPa3N24LD9bEPD9K8dEpJJ5pHqKDx5X2PHqStJJ5FJto3Tm+brSco0VFUXdm57mybpyWRcpWwaWEucgDOcrEEh6jN2GPc+A+z+yYEwcewuy+m+W4Bwc7zh3NtVQ.lL7qZJ+T2wV.ntSNWRC17a9oAa1H4cStLeIx3cQSHU1tnI7gKUNojMEi1fU7Rmfqjk8q41.VqMYJox0EISm75hjQtTdQx3jwr6TLtIY3Jm2jLbE.r1to1zpqMlh70FiP5OWJ7sRzDrQCila8BilzgElK3nga93n4illbXoGHsaFmpLhj1wSKr3AklujAkleCAJMrBJ8bPocSQak3Q3LkkQ3Edb07Y.t5JvsguOTYDfWwzC3Uf1.d4KB.dYyE.uBmeA7B7.7xlimjZZCxkoL6Bjs34BTnjAxUXCAjqP0EO9B.4xVlILlqXPXrP4DXqPggvXtJBiKzDFKkd7yhzF+rPQ.+LetfeVbyG+rPz3m4Kw3m4JydW4KFdWEKYXlE2PvLOidbUv3IFepZOq8HObkyuj4kJ4a3HeYd4rBEukyJVNA9JVX.9JTA7sPC7kII.euNv7jQsGQZyMlX1Jx4HWdRts0rwfpvBQBMUF1EXLXfIpmV7O9s48zYNYVpHUkqfSgusUryHxsZUfUHxE1aLzmgCLftJD00GpcD88tCPYiVoZfUJl.m6n0tB30KSJlJ.aws0vWjyzINZSudvDth6bOVtw5BSL0E3ZQWRxw9kKZM4h.bd5qml0YkgllX3k4M.STz6aLpMpXZqaXoVX0Ke2Ac48xYa3cTcLOcvLA+2EAObh5O3DU8dmsHzdM.LylUnYbyJzyj1mYXjk6vwKvvvxIIJwmcXpoDLKGV8Fn8ZnvKdIZrwLoE3ulOfV9eojgI2EHU8.N1raLBTaXAYHVm1C8rDVGyXneHof79mIK2zCBG89pzUf.n0q2V7Ntg2.UTrNIabnLSGYFYeU+M.x6IYm9uEfR7rcXDYmWPD3DghRPQ1NB7PIAaAYav2cwojdei82AYqjlkTQIeIBbDt6YljNIK6YFQksCrCVYkkk3jE6.crYcGYXXcjl9z8kaAI97XW2bKLyl+De6UXX2N6q7vt.8x959M5jKauwFlOP+z6ZiMMxUbF3g0quugttZO7Te1Bj2GQktWRs.yxRnK1M9qucpzpqdXhkVTWJIgXKuNYkY5HvWE73G9gvCLLSlD27B+W9s9S59e+ex+9am.Ylgpx7SUOLox7+f+ss+WL4n+MIQlYooLyjB67Q+PqesetK7ajDYlipxbJryeme2O7uyeO8ebRjYdZJyrovN+m8O6+8+om7xuHIxr.Uk4TXm++9q7ondG+qRhLKRsI51e+zLsg68xPBDYIZJxI1JmDOINGyQZ0q.ItI2DmD408zhPSANSMvtA+NcD3a.dtyZeyAqLC0E5bvRSKueWG7L6EkmC1YNJKx4fUlV99tH3nwC1GsFpACh+Dxuye6272425O42N1SHay0Ocj2l.yWoY06HXbk1uJ3VnUDQVcmDufLmDZEdK2TufcGbtoPHarTR2TpEpRLTr2BHVIORpqBrwWEfwVEV10rO00.truQfMiUA9rWE3xXUPH6UA9LVEDydUPHiUAorWEDyHUXavcCP8LpPfA3aD5v23TF.gBhx6g8Qv5PH1x0mF9B7gi5aNY1HG4tVVJ8NdIJhmH3oLXx6fcbnojStCDJ.micOnrnfHTPBJvwvyxvFlxe+XUwy8EqfFiC4+dJmstT3twsqJt.EY3536OXL64Fpd2Dz8DSLy9InOKg2UW8lSjSVjiGFlZ8rjzNtKfQlYEaFaBdl5PUES00UC4GrjJdGbEmHLDKWYa.9.ig8yIMMojbaexvumgwwiTlbLll7O9QtaJCRCsT0s7Uj0qee0S05o9QmM1Vruup4wVFisq1dpllX45BjGdEvAFCOqauIZisd3mTiPxwvwCdhQ+Gqbl5DXffef7d0p+M.sGbhtsUssg99j3K6lucqOqUyVedq1HS2C5qgT+tVJVX4Y66Yz+Lb.BoS1VlmqYp8xgNmEntFCMbTv8ORaX+oBoo81QYqb3c7T05UF15d85N+amtIWCKvufHa53sZ3tCGZ7JrdM9HCcsdjpw9Kw6mkFYiLw5C4ip6ejBpSxPmEoUGTeK6sw0YuiC4Jqkr0cj.jJTIXkCezYCSpcH2itSCKqTeSQhW9Epmu+svNoQtUyfAwt8Ho.xy0vw1j5PT+w8HOMQa5HXoCNtJ3omLxmz5NV0tMqVWajJ9NqC9+hZyM6v1KdEpokgnETh1GFOJVhK8N2IxhboVkDu65IYKf2M7Kx2rapVRLV5f+Jd6NbJcXS1zeRM8XUT++EuWv4ll6hCaIJdtIKN9Wy71.OLXEAs1CBEMU741kd+c91+jImFHJu3Sak4eS7eejnOSTID1UbwrAoXo9BwxI.Xwate7NZEE46GW6XAqPblmfkky7zNjy7To+HO4f+n5VBHzaUVXo7XLRB6Slh7H5B+QkBFqiJ0TC0ahCjr1FSZqqdXa2k3zJRCcJSpC7UmdpB8omBl9Ege0.Wh.vTjlUuju6LfBPpZfIx9pcnTVVUrJKqFwkNPmHy1CLIDSNgJrU00WFjkUYJyvxa3r4ZNYcsyuYjM10eZVsoaFJ67QBYyScoe9XaaplO1XpRxpUIY0HSxpvMjjrpHMSxpaUNSxpraJIYU34XW5bEnLmNbi2mNHPRVEROm54fqblJW4UoV04Ylio.bIFQt4SNumYUwcAxnLqpSYm8T0wl9a3SlDcW1DJWc9ueOgE.x5R18Q6pPVmTEYcQPVGLRx53nxEDZRwCmAj0wso.rm4bLvdXABXOy4Cx57ouEO15V1owphrtJx5BgrNlMDx5jpHqaH+lhOc1ya9z8ECQh4bLDMumb1yYdxYKmdxq3pqhqN.4HhEnux5mpNmKz2Jt5J+b0wk9vpKHycrshIWcWZAb0wT.3pSL23pSthqtH3piIRt5D2T3pSnjiqm.rMw4TjHCzwzCwk+bFDW9L.h6VTc+nYqXqphspHYqhcCgsJ4J1pFJtovVE243cfRhNrU4S0SuSctyYN04JoN0qHtph3pPBxL1hByURm2Yt526aZ9GlgLWUKWNPn7zh4JtVqbdjls.vckbtjFo427SizrQR7jbY9VVw6lXPpTlAaI3RkKdIvVtRVtklaCI2RyWxtoU5jW2zJxk4DFemhwUsBW47pVgqvjUp6TcupTnuWUDR+g0fOgYpyHgQysdgQS5vByEbzvMebz7QSSNrzCj1MiLUFQR63oEV7fRyWxfRyug.kFVAkdNnztovrR7HblxxH7BOtZ9L.WcE31v2GpLBvqX5A7JPa.u7EA.ur4BfWgyu.dAd.dYoRHKtd.4xTlcAxV7bAJTx.4Jrg.xUn5l4dAfbYKyDFyULHLVnbBrUnvPXLWEgwEZBikRO9YQZieVnHfelOWvOKt4ieVHZ7y7kX7ybkYuq7ECuqhkLLyhaHXlmQOtJX7DiOUsm0djGtxIfw7Rk7MbjuLubVgh2xYEKm.eEKL.eEp.9VnA9xjDfuWGXdxn1iHs4FSLaE4bjKOKv1Z1XPUXgHglJC6BLFLvD0SKQfty4IzbR9RQpLWAmkaaqXmzfa0pPqRjax1XnQCGX.cUojbumtVNm51W4GQpTMvJESYPYjhoxvVvUF2vrKFZSudvh8HGhtvDScAtVzkjbLf4hVStH.mX65oYcVYnoIFdcdCvDE89FiZiJl15FVpEV8x2kxVdu71FdGcGySGLSv.dQvCmn9CNQUu2YKB8WC.yroQYF2zn7L4IYFFY4Nb7BLLrbRhR7YGFaJA6xgkuAZuFJ7hWhFaLSdz8q4C3k+WJYXzcAVUOPTya2XDn1vBxPrNsG5YIrNlwP+PRA48OSVxbGDNZ9Uoq.AfqWus3c7CuApnXcxN2PYlNxLx9p9a.j2SxNeYK.k3Y6vHxNufHvIBEkfhrcD3gRB1Bx1fu6hyg69F6uCxVIMKIiR9xb1Hb3yLIcRVFzLhJaGXGrxJKKwIK1A5Xy5Nxvv5HM8o6S2BxT3wtt4VXp.+I916vv75rxC6BzK6q62nSt84FaX9.8SuqMN0HWAZfGVu99F55p8vS8YKPdeDU5dY9ALqKgt323ud2oRqt5gIVZQcojDhs75jFioi.eUvie3GBOvvLYRr2AtNAxLCUk4mpdXNHyrzTlYxG6LGUk47wNySSYlMw1YxGRf7JPU4MerwhTaRt82O4SYrC9gHD7IPfkno.mXabR7g3bfGoUeBj3BSQe33KutmaDZJvYpA1ML3oi.eCvycV0aNXkYntPmCVZZ4265fmYub7bvNyQYQNGrxzxq2EACGOXezpmFLH9dP9D4+k+jS+W+GEaOH1r9SG4sIv7UZV8NBFWo8qBtEZsPj00IwKHyIgVa2xM0KXeBmaJDxVLkzsmZgpDCE6s.hUtUj5p.aVnBK6Fmm5Z.W12Hvlwp.e1qBbYrJHj8p.eFqBhYuJHjwpfT1qBhYjJrM3tAHcFu.h.LMBcXZbJ2ePAQ48v9HXcnBa45SCeg.wQ8MmLaLjbWKKkdGuDEwSD7TFLscvNNDTxI2ABEfywqGTVTPDJHAE3X3YYXCS4uerp349hUPiwA+eOkyVWJb231UEWfhLbc78GLl8bCUuaB5dhIlS+Dzmkv3pqdyIxIKxwCCSsdVRZG2EvHyrhMiMAOScnpho55pg7CVREuCthSDyKKWYa.9.ig8yIMMozaaeFwumgwwiTlbLlf7O9QtaGCRCsT0s7Uj0qee0S05o9QmM1Vruup4wVFiqU6YFmXooe3STrln8Zbe4SF003jI8T2+HEjYZnId+e1Bu+OjO2wc+f5pp229CeI5OmGBwettyCgtOLWpiQJ8lX7BmHbCaB209aPlIcT6IVkeB9ysg0N0eS4Hs9ZunWO2c.L7eCSJ9Mro32vkheCeJ9MBo32HlheizR+MOA8QmckCOTD8EG7.x9CV26R1c6Z++AloBpi
It requires some offsets and logic in midi processor scripts but isn't too hard to figure out. I am sure someone else could do this quicker but this is what I could figure out.
-
Okay the other versions uh, had some issues. Here is the best I can do:
HiseSnippet 6029.3oc6c8EiaibdmRqFs+w12sWr80qEoW2lTD3.bcgH0+QPpj8ZuNKhW68rbbRPCfCWIpcYWIREJp06doEv.MW60GNbMHHnvsoMWQJPQPQ+yCEHWPRqMRZA5AzCIHtsouTjKoInOjjhKOj9Tx4NC+i3PJRJRJRJpUidXwRNjy788My7a9luYlebGIwlb86KJQkZ4acbONpTmFz3XA482XeVdApstLUp2Inmf3s3NRdfDW+6zfWf6trGdUNg6bHCK0kNtGa+9bsnRkZgqhdiTKmghh5Uu+8e8ZWhsCqPSNsao761h7M4tFeWdYi6tS8OHemNax1h6V7cwd5B02ponvFhcDG.ktE.4n5w17.183tNK5wRCnRk8Js3kEkZHyJy0mJUlKI153F6KdWA0m+17842sCG5BZpFvLR81aJ1oERhQ2kZi846zZGcqPeJXltigMYAUax4.ay2he38MrMqpjvZFuAt8HUZyh2BlDOZmDOaDoTXhTFUQ5o.MZJw2S1HEj7bJvVBxbRsYglcbQQ8YoR8PvFhvGPPd8trGvsoD7hguvEJkK2ysF7Ou22W6ABMk4EEVST35hxb2P3Bu2U9jqr7J+Nqrl0jZ211zPEijXmNbR1lLplVxsW7BBC5tKmzys1grcFvM7AgpuYaJva1zlpZM1CJJrk.u7M5wI3TCAJMSE7+9PacYVYVTEg18fOWONIYdjHj5xbGBaUqVsrL3xb8OPVrGrc8H0YvVKhsFzgU1bSHT+FsDf1.S0anJGg97xGazs3spYscUFmsA47byduJtOEXGd4l6au7l1F4EZ0hZ4UqW5Y.WocatlxFBaFvleDW6RF5hxRphxuD3pcD2ksigAD1tAJUbpcS+k0Rdsgou1vGf1ILU3uuoWwT64YL0TK3YKhOvPyDUXnwZa8yNR0Te+26bAuIw1XDWDSLypJluSMTeTs5sYk3YEjGJaJhbVv017FziWJuDeOwNrR3iM78.F3v8j35wJwcKwc5vd7E5y1sWGtaB0mmaM0+u+NbRWpiXyCFEBumpPqj5E1c.rGojiCdD5iqLtQO.gzHxXiMbcN46JJcfxvzZ+OrUEpt.fpKntXmNh2cCwt830vKglbk6siXmi6sun.eSzsTeBNXiOAAtNWrq3.XtmBjJsB.50EaAkprax1DJ8GuCq79Hj3l5XFq2bXaV0B0n9WoUFTC2gUB51Dbn99pZGJG0wA.onTTotcQpjhmUKfRWUmTJZ.JuOMnM+QUtytnpVJSxxSiIKXOiYwvqE4BXE4SAtqDaOw9MgvYnF4zlK2yhUtBh2oKDHIfEpY8zn.oFwlKwsNVx9qzP0xc3NR2ahKy2uGrC1kT5kzej6.udKgVbGgFH6WGBjgUGhbSU+JXQsMuvsQM0Q0+4VOG01rGM75BvqaHy0qA+KnbMM7ZUnhsQp7EGHK1E1cPGsDKayZjsYQYKCV9lEPmyTFeN3SPmS8Gcgp4noKA6Cc.2cUMfpO.CS0p4JTrDCS9BUJWonlSqaJw8IFvIz7X2jFSJIsIkDJLkbPKOsRlu1MQ88nL85Td0.R6nA7pPI04LMy3xTTlrHXm8Y6ikK4BRtjUwIRqhhgSpla6XJEkIWftBN9PZUK1V8uMJ0lrczyQHLDV+iEA83XOvRWwSo10.kh+5TjI75TXVkM7Q8VrR6wIitGlVrLnO+dLcEaYVOdB.r829qqmF9HoiQQRap+YJ+2RP8VVZIDpUhljvz3RnpDzXeVnaFiCMQ6hky7IO2eyUepRYpqLuHANkQg6qMMIsKguCxrsUKKvpCKaTJZPQ9EEixpBjUoyN03r1Ck+eqO8O929y+W8eUyU4O63kebDrnGyLP07WRT7ftrJ9oLwSm0WNixPbF8jkynoldNilN9cFMMwYThynDmQINiFANiFllA+5MqGrEwq+rSr6nKBXVuR0RTylNih.jJVkIG1OZp4.+RiUeQyS7Ek3KJwWThunDeQI9hR7Ek3KJwWThungmunqLbuD.Gt0vgLM2O1XC+st7en9b2hUwoKi85wVBGBkGz6abOiB55JN2gmcM5JJJuu48.Be8Ky0lcPG4ggA2oMpSv8BziFkrHiRbaUdO0S.VEs8IzJfayAcHDotH6w4GdowVNIZLOWlqI+tbcTPWhZccQUccIvMYEZI1Uaq0ndQXpmp4nxsU5GqNvQDnPAd+wsv749i6lhCj4E1aaVYI9iPi6MnaC3.8M0mTWe84yoccNcW.ZvIzR4hGC+okHM55TZIRqmHt59Dpp6o.n8prxlYVQYeZkqW6CydH2ZWkCNwnQa0gua69TO42H72sc2noLr3ukDqPe3b2LkwM35xeKQAjU23lvl4nQMUcR2D5FqjsI8V01Dpj19NMXkGHozjTeRzXMAmzcAXtSt6BvIeC5F7s.H9F+dYcYrAOZZAWAhp2A5dhhL9N.ZidoeWysq2VTPTOhJX3kbv9i6smYOFrUgtnrLayCLty6p9M45vwh2.9yU+ZvFdrRlGQwW1B+uI3ss95Y.ph6ZnNiqcxXiUeRZfCe.f.F018D.T3AUCMKTFTsb6o1A8ZrGyIQe671dzG9U.1EOzoUHPOqhLeGUgS.1mAJ0dKfnoCqcJpchf6yB2jY0RnSSkN0B9dNWJs.0Cz3JXQPXEPWwVphpIM4bXZxvmvEgF.3DNzbC0EBZvMrFA1EAr62puk3ftJp.UPfWWMUuaQUZs6rj8jH2lvr35SbWod21P5z3tH.kgWmJM9MnbeB8KpOg9SA1U0qa5blmOudHULlKuAvjwz4wlJ5vYzi4RB1z3MdxqbTOIXmIE4.ZinbUro7aPxRqEjLU+FuBbtgsfPPCmvf43.sj8A80EM8k950snou58u+Wt1HZZ8qu8qWCUutj1vUTX4yu3e98+4ubcJeW3iZleys2cmZ1alQE9YzJ7qwAazRMRlQE8p+hPOWZxdrkx9gR0igxNK3C.G+wpZWHNL7KCZLnuLVnoiUi9x.c+2Lxn68JGz9u3uOTz85e2W3S4gFcaLP5PNq5+aVKLj.064nDXdAJLxY7fXiC7YynoPmGVW6A7CF+BiKP7oRY8lPHBcv3r.1VsxaON7UDPA9P4T3MpQ6sdv3LZnsxqyUaVgjMARt.VE1hg+vA1D+diWAaYwv2dy1JHi2H3EAoAzy.+HH1zD9MqMpfPU2SBxq9Yx880Djqx1sKqavG8s1fV2iI5IyopEAcZKRuRD4V0oA6obn6tyHqej1ZLikrO53kYh53sxPvf.z4Kr8GJL83QO5YNs5ZdD.NWc+A.uHPUlbEAFynGV.voCC.XZB.rpKN+rW66Wi..G..3hSF.bVD.LSDg+dFL72RIO.3JD.3HD.F150N.3JIKOfKP.fId.OQ.vkBAOfyuRLf.WL4g.Wkf.Gkt.W2VD3pIKD3hDDXBB7Dg.yLoKrSylzw.9KcxC+kIjvewqsU1Flzy8fuKYO3KSxB7kIB.e8UCfIE40i3LDj2HA4s7jF7AHxab.8VH4A8Vl35aDh9tp8nukSVnukHt9R.fmH.3JSF.7o.GpcHAhi.PjO4gBWhfBGgnvmydT3RIKT3xDTXBJ7DgBWcxPgWFHobbihCLXljGFbQBFbDhA+L1iAWLYgAWgfASvfmHL37SFFrqso8K36YvjP.p4sYYaEUxK.ceWjnynblJTOSFVFYHsyrMPp3n4ho1sJLDg4VJZGbD0sGqx1LM.5+nm2B8S3SjZAbM5k9naqUa.cPrAJ6NG5YDiv8Z+YstGtv5GnsaKBpQfIt5ADt0+Fpdwfn51t4.l8zclf0+ejkka1SyKErF7iFV7YOUubPTcGCH0rm9WIH5uCSEbFa3tlc36Yk3pTzdkD7tWXCGqKsWs.YiEWdFYKNlUctUZzQEsqbUULq9Q5LUL2nWgVxbjuxhs.KrLnKuPW1ilCNeElYJMc01xoHVel8pIGmSrGMAFqjPlBun3ZcvG8g1LSRJOcpDe3d+cmutqyqO6zYd8e7u7s+A07yzoGuQ3O99neVMB+FM+GdCjQPsEALe46NnK0HYd7T5rGYWoSQ4VoqTwNZo+q4sPI7vku22R6XYhRynn0kLpnGsDVzvm2nn0MUwvgQcEDiVvJg31CWL58sBbu2HjifFv8d9LpItLL0XBn1j1oeTB5b4Luzper1u86pzC8S+NapEp+Jd6HQ+wO6keTM0fRoxJb7B6YpZPnc62t1D2ya71gSCtIWeNYmFy1T0xx3hipvyIbnFSfDxtSN78d3O8BerW4q8OWahoMB03VF99743PHZFoSqDWln1J8ru3O74es+rG3MqjyGqzokQ5TnowFK1n+wZ9zFwjbZHYDj2Hf9SFk.J8jcRMl0gDEsDrsCJdGMl3oileaDUIQgFkOhMR2Sasz7oQpZxwHgBpVjZjT9FH6OyS4jh4Y0gAdKdZG42Q0JkTLTOgVD5hXyzpe6uPu2+JeI+1cq3zxLEleS.cld9VEzicFic9NulHaC+7gyEenxxNR6KrXnO6Eiv6SXRfYbOrU8.NwiUFKU9a+mvjkTIPO5S3Ln23N8.DBzK7IPueze5825SSHPuoCA54drBOwRfdgntehf.8RfGfGWliLYWKNU10h+aau6pOy23+sVBcWKNgeHj72wc24cPle7pxO7mm+9bTE3MKdgYvE00kOvbo712GMW91qYYaea2miJ6.RKjr1+2QCO3EvY5S1+25eqFNgijVHDntIl4zSsCg77HjmGg77HmZmoO6kle97nqS3NOB24Q3NOB.bzerIc7H43mXI3KlvKlBlPQRvDFSvDx6ofIT7jOo1QPEIASv8fIThvEd9rypwF6kg3KarQFd3VcBa3QfsIzQ5zgM7Jl.wgIeRphO5vC2pS3COBNLgURmF7gWoDHJbNBJbrQHdI1OMqDFwifBG8eZV8UfVWvN9saLD7FV7M5wJXFQ2lPGm1KAzz8ZZ6aH068ux29+dWqAgxg.a5Nm8gs+O3DNbsIPmFCa0nFW1QN4P3JnI8Y3qIvJ3bTaGCaz4F2yElUX3Ac1YcQ8MY+q+w0bWeHDKW.T87mb4UNWXQtvrGpKJq2ZYixN2aYSXPNBCxQXPtIlA4VXVfA4VVmA4bk.4bGLC2RXh.4bRgy37JEO5XzdaWlONpfy6Zf+Wb+kAG0lsEmD8Ip012QSsg55.quolbfCiwvtMd6juZ4gyB1FIpZOyRfqAm8AblzQ2Aj0ENmKHbszie7i+7dmn4Bh.unh.SOkjX+LNvzXB9gvBzuHn6fNx7TNdF4USNXSDNsOnQMeUBocLzKXiOsDDlHmUD6bllx34fWCeFkezEpliltj4gpOKn35EXXXJmqb4BUJPmOWUJLtTyKw6v5nFKAPkn+DCzCjOGct7vGnZ0JEpVVyEZa3RMT4UzoyFaTZSriW0FyHg5cuIsJl6aU37v4NRHeYblP9xB0Ha7UaHvJJdWege9Op1zhOhBJqekwE50ab5bq2224Fu7e6+ie04BIBc1d1xycUN.DNUwosxFez51+GhjI+o+mOfPqatXj9ZJTw4OfPqaim8DeqG3W9JkYNic27NdjKa4nYVhcyyjw4+xGr7evE+M+dytzeK.rCqPj0aa+1ne+G075L9UV+QORGVgtkwuSNEwoZwFY4seu1yVjk26.IxSYlxyFYHIQSdV+rn4myf0hprj2XHIOeMkzIgl7ljH9kwHdu56Omw.AXevsiHBsSIBt9fO6VzY4bYkINGfYNSWsboxzkpPWp.Sw7L4obhg6TYsLGmTOXb1PC45oQomSWxJTFNi8BEUmxtsramVcvzvPXOW24lcH1DMaoBO2jrrgRMjKzf2z2l3DK4EpMbqp9qb4REpvTrBCkiLj2nQaxGElwxpYl66zhZjcKNhoU7QGvaL6WQ+ERaOtNa.eQaSngFGavLbdaF5qklDqYfhSV1mONHC3a5OWxHKUxEMkOLnJYKskKkOWUFX64J4pTrP4pkorYS8oaE7TvBmninHsebzPgcinWYVk53.i+CigqMVcvcgSBb+FcB.4fgfbLKgbTND3oGl4piygye4BHmlinmnzJQ3oGxg4fbj5hehRqXxC.tLA.N9IJsxDtkf..eRB.lY9gnzFcpy4mvoNyj7m5r2X5r7SkoNm0KK1oupLFYMYC3ToYHSkNlIc7XimvRfbNdQhmbwFMgkTI2wxjuTDDO4llbNd7xRXIPhGu.AEN1HIrj52qmBDTXBJ7DgBWZ1givJj7vfIDla7QQXXFcBCgQvfmW+3OjEzePW+rcfNs+YTqkAMglu1s8Pw3IBsv2DOkZrllPlyxiaQaOoAtFpr.H9LAf3uRRxew4Wh9pz7KQe4I9ErYS5IB2.D1b803aMWN4StWg3nxdmz97HAAsxvPwDULG44UpfKVtPkbL4qVQYSoSS4MVjbtkCu.gKGdcxg4tB.ukkdBz9H0g6fw2Wg3pTObQQAf9G117bgNEXSItOw.NglG67VJlw54UgQ+7pXY8CYXpVMWghkXXxWnR4JEiNh8JLWwQUyho5jy.Zy2Ak6qiRxeKUsEUdS0Lx3e82YeCXO97jTonN0Fi5cWVAYr9JmUghYTOPRzUYPKTLVweVP00qnblfJQWoX9bLkyOpfTpPY5xUnKmOWohzUJoHHK.dditLPqY874ejymhJL+kWDZ7pXcSLTA63BYb7rz2t+94LHEPx0wgiGkmK6BNd9mv4GtwsF7odxvfabFKIEL9iVp0yc+XOdBSBu13c404S5R.DXfuIklQbmH3JP9vxhuDXCk.JP49niVHRnGs8tq9Qd4+R2Yf.fw3OH24FyoO1q1roAU4D.ZDpzbDI4D.yS44P5wgZpQEUyHriSfMTENwPQNQpYJwv1RK.tHkmlM1K80qG.5CBsNW+Q+pe05dkfYUY0CS1lgr.QPDS6oX129wOt102908fw4xQrwQ4Um.iiNyPLMrMMn7+z38EGlUaBLLFDDQPh0.zz7c1d2cpEz9T2L.UHwnoQmdJlFsZ9.IYSiFalLMrKOuoRMuxuGYZMWei+Uzu2susK54k2rK1DgJqBmdLBrXRdnYgyIXPT7Zd2+ju4LF8j0Y1idx5j.nmrND5IiPOYyIzSVVXtCy54atIaQP9btZEl6XlL0y8UBjUxzV.CBkjQnjLxogjPIYDJIiPIYDjiPB4Ha3yHNl2SnVm4zbzIqlvQNSARJqL47jPNOImjNOIUmQHor7DVhjPRYIOVhrJA.l..SHorfNYZlS9Sl1ajTFSBXxzgBiwQlKMgSxR5Lw.gSxHbRFgduINtMGwIYEIbRFgSxRdbRFgiuInvyMbRVB7CcSdBFb7yIY4mGXmWBFLgSxvwf8W7ql.9HaIM9HiPGYSO5Hyya5qohBTY9kOxpR3iLW604oUWIv3F1qGwAW5EmrOl+q.+Yewex2Z6c6UKB3ROGixxrWC3xDZIiPKY5oYGwi4gSMlmftF+xy4scJ7TghwVxuTLlcSuoP8QOlqOxCNTCm6Yse2tuwDOE2oA2isHvlCN3nmmwf4GepYQRNKajSxYoRi0Haseu+8a+OUepw4Yp8xI7c1336rbg+56G9DllGYAfDFsoAkZ4OyyjYyiqMEHOsL9l7zFJ0269veez+D+J0LSWFSyST1SlvfwzlFDjFrVQMBjOX1kGvhbZRKvFoRyUjk1eHp+88+hOfPVZQSqo4MxRSyLUymlo7IGxRK5XomW7G97u1y9hmudRmkdBE9iyalju6K.au76+UlqHONeP0UDliivbb9vzrWa3um8yUmvbby1LG2TmlzVTMwSAZvJOPhEIupk8vqMsjKo0tshFXXU9vbx5DKlQEvNRbJQQA641Qrur06kZgPhI0TLfVn+sUAZAWUTZigLY1u.vPKVyH3qlBG8VHiYekOvKXMoRaVTy3rnlCSTwCssMD.2MEGHyKr21rxR7ncDz0Gzsg3.ol5T1VechAS65b5gPrAmPqb5aWHsDoQWmRKQ5g6knSJkQW1lRh2QaqFoPVXJ2AZaEfceQMx2Fc8ZzTGhGpqt7s3uSyl5wh192gI.uS9.7NEBv6TL.uSo.7NkCv6Tw02Ya3kZwiE0GCdicthZXqSYr5EKP8+CLvf1DE
There are some things I would like to change how it responds to midi cc's but I am getting close. If anyone sees anything I am doing silly please let me know...
-
@crd I should have some time today to have a look -,
-
@crd I am having a hard time deciphering what is happening in this snippet :)
Seems like a very convoluted way to achieve something that should be native to HISE.
Or at least achievable without all that effort. :) -
@crd I see someone had a good time dragging cables :)
But yeah, that's a bit convoluted, so maybe let's take a step back and try to solve this particular problem with the minimal effort. If you use the filter's native bipolar modulation with a (unipolar!) envelope and and a bipolar LFO, what is different than you would expect?
HiseSnippet 1321.3oc2Y8zbaSDEWx1aacZaZaHEZtoCbHYnjwNMDJCGpR7eZ7fcrSbnEFNzYqz53chztBoUgXX3FeDXXldiKbkOCgibiOALkuA7M.dqjrsjiFWG2DhC9fF8d6ezu268aeucW2xkaP773tJp42umCQQ8Vn18Xhtk5hoLkZkUTmG0.6IHtZgp1pmC1yiXpnpl8oREp4yoD76uexVXKLyfLTkhxy3TCRcpMULTaK8OiZYUEaR1mZGq2qqWyfyJws39.dxhJn3fMNDe.YGrraYPJpWqhIUvcaKvBhGzms3l8Z2k+Mrv9+LpG8kVDoPQk1vDEpVoTWpkYq91pmhhJp0PKOankuHpA0jNP+POvcCZPa3Hh6CTyLNHU7L.I0XPJWHjtGpsgK0QLrEIdtIpFCBHcvfqNNTB6qh5InRbnCLwp13CIUcAgACX4MJT3gZviU9zN9LCAkyz3rc3BRS1xqL22MW94994zFsoNcRsM4mwkaYQbSsYYz0cbCbYlu8KItOT6HrkOYPGAyOoO8ZSlO0Hzpi0QNqFiJZ5PhjqxsLk9J46mNBnD41f297ZkwBrLnDoC5mCwUPkvQsL4HfUGFhxiJS7NTvc.d8ohe.yga5agEIoSx0MQM.9iDwPYfh4QE8hut5LvwJLVN1jBw6gZQEFcSGiYRAifm5h.iQqLuMpRmNDCwP.lCU8Kl1kgS9m+9ge9ahdN9HRPZwfO98Cj6vcs0dJgQbk9thiIw3eLoIFcl3DiMMD.D12Ey7b3djhwm4QZas3sUlH7YI6dnpD8RZdUAyKV+tgdekqEWYKLKwjAxIloFziGJ95mTgggfPaBXMlM8L.iU56hS0a4a4QdN0TzsX7ANT8ZwUuM10DhKFIHhYSxDxMYIORtlLV+SIS80tDJdb9rv9RL2Sh5a46iw1TaGKRE1QDKHAa.FW.xn1A6aI5qM4ZqFbF2oKmQSD02iHboGb.IAYJUCZSg.1UwPMKpuGwhf8hsd680qSYDrK3mHSou3rWqO030CPgvUSlPP6paMir+utlQZT6EPs3V8BIpUoVv1uB.QdTnv3pWnnT0k709Dlw.u0Jm7S56FI7yu5UKnmjZ9.8c8wVC8tZKszu+aaQc3VX2T77u9bjImaBoGuKZfQ8VwiyMYAo2vN8lXNsLxb0AuKghB5ZRm8EEtKlJtSkcjIFvuaHvuNZysK2duH+av6Zu0Y5iL6zrN8+5a+gnj9k7cOhjbuOF3dmR6nUH5qoNAPYb0aCFe7pFAS2.E+4un212SjXo8WdxoJ1rtdEC9EWkFzDRctc7JMy3z746i0vHxrMXuEJfVbUvudGTDg8JgicdTzZoYEW6cBAKBUuZyncaCuoM.5EGKFg7T+Xr7XYFcO.Z+50ert7rg0XidVM4QQitMhAVacxAv2Ltl8I1N7QOsTaaNWzkxNH4INWTuNm6DdbMyDmOqK3va1oiGQDeZJA7FtcerDbWcsEDmfKQQ8qPar9pvuNef74mTBd7nlmOxJmeIJyLgzt2IHnNH5ICuy3KTBQbhseMyuzd2qNa5RdB+imsOa16gZ5YrlVvAzztbNg1dbeAjloAF181wPRxc7say8cMH.JYLhEL4H0LxTIgxEjxAYnHLy.g+A9E0XQorZTiE623+IeCargK+EFgWfsLuwMBz.1MK3eoHOpgTVqnRvkZKKGTX0BJ1TS5KLLjmB8CAxV5iYsoXLOZJFy5SwX9noXLaLEi4imhw73wNF48usoOTdJjyCJZUIrvj5fBbpYU9W.T1VCU.
You define the base frequency with the frequency knob, then set the modulation amount using the intensity sliders for each modulator.
-
The next step in complexity is to use the native filter module, but add an envelope scriptnode modulator to the frequency modulation, crank up the frequency knob to 20kHz and then create a suitable modulation signal that matches your desired behaviour:
HiseSnippet 2746.3oc6arDaabbcojF4PZGG6DmOFvGlVT.aW3pJJ+IsH.Uz5mspsjnMUbrABhxvcGJNUKmgY+HJ5zBT.2CoEEnGxIeH.s26Ieq4RcQOEzVf.XfdoWbQO0a9Z6kz2L6uYIWRQRKoXWGi.aNu426+ucRYGgI00U3XjK+5saRMxcDTk1bu5yWmv3FKufQtihVg35QcvAflqcShqK0xHWtwuhDPt7SXn9ySlcNhMgaRS.YXbKAyjdcVClWBzxktFy1dIhEccVCsUegRKaJ3yKrE9.9LNZZilDysHaRWkHW1XHibStnEyS3Twi3QcMxMwbBq1UpKZwCV+sXtrp1T4fhFUfCJ.7RBaKIFKgZLeclsU4H510.NzxIbgwC3Bm.sByhECOgabL0D3jcnyOxMVZza7TnWQczaZMzKCTJmFJMQ.JcbTESGVSujYj3ygQKyAgSMBv10Qkf0Zj6gn4EvB3dS0frEcIGXP7FNykld5ygg+5ruSMetoGSvwB9pBO5Z7yb1Bebg7E9YEvcNUsZYNm7ZbD11TmLmVJoc52FOC2uQUpy4vaSr8owKDH+z7TTu4o5hby.pVagB9xbl2ZMo7doHXDxpfe8tKu.wiHEDgvf00j53wjnPtEnaCZ0Ahk7nEnta4IZB50cIy.sEgkuMwKsJjztIbBfGjRtIENbWlWac6p8L8pAEEONpLyyrd133XYfi.mZ+.GCsFeYzh0pQM8RPvIPKc6C.SOTv8W.cYNwtsKMxlKZXwT3vb9.V5TgcWMeZOrTYGPag1JTaIQlN9.ivE6O+5lBeOFeyUHdNrc.bdU+FU.OnlTfcw4TaoQStwjp2AimVNVhDUnbK0fuB9S3jEkiyENYwnI0kIud.kbXz6Q1lphUnXJutZbMgSC7UnbpiTgpXehV7kCZzhlCbzh0L8.TXcGB2sovkVT+j6XtYzmaApmOO8xC.kZURxaIf7zV2IJEAbFcfkI7TGFLN0IshTLEM7wytHm.B5JTfZrVy0DHVIuSWWorusK88XVd0KpuwDvynC9pDGKPtXlx5b79E3r3+2D374.evobvjOBGqvZzzltHeapMDnQgiuJDYoFw21KBZZyoUDbQy5BNKkf9lTvKvlaRSo+jIAcYOOH6Jc81aRsoD2DSrRaU55LNk3.7I5H5qu3PmmSlxq2BEftXoO.7yuwNG+EmXmgp1uJprvtcfh5RLauvXn4QAC5WHBCikbnejOkalvs9jGU5FIq.WJsp4aU5F9D6DtK9jm7K9SywZJrINOsb9cQSdhAT83MPwDE9qe+OGJ.SOYXsEQdZhwaEJepvYwQSiimeWbIgu2B+pRc5R5C+uW4QY6RJpnkygFlBDP6UIRkj9+pTuVBmsTbqveCR0.dgqBI2fFxK1nQBu3x11hVIp6xbkUflWznIKTPCrofgQomc4FBe3RCyQK2XqpznmbIhIblsKSf7q.eJx5Y.UHpyTlwpR8EWRULHvMJSbfpnAKNYALpKIJ0ofjAAjpgj3UkYOtbdI0Od.1fjW2gPtMAaKidhYASqewix07xnZrcN+LaT0V.gmRcYuo1kouH8qI+j124AeUpq51n0qybwsfLqvVzZv1wd0o3pPrNbsHiwBmoE8zvBbaHDd0wLOLAWE9aWAtEEyoTK0lTWKVcsER6DMlXFSiXNAJ37nVazLR.jllNkhl.86oxXkYSX5WaZ9oVUpA14xQfI1XRbYRjxY4sjlOR1bPrc7MIMfZWSbEsNwYSpm5.5Dnr3B3HV1RdXR1mQrVkD1gPAmcPBspREWgwCuOszeI6zArmLqgl5ojNh4.4lXPOh.Uz.vW12Sz.bGnvACsSC0wo8au+8+Cy10oU52TphGsoVkbp0IugWAUQIlfBtTkizAZbmR8615It2wsESO4QQ7xt4XZZYgBiT5UEP.Cn9TDKqdZQlgohTKZrTxhb6wxBMMzTBci9p6dDzxt2RNqIwNhW.mlFO3nHcufF6h6yzrgG792YWLrxx1FgjL2dwzi2eaMuOlNTfSnbj3x1jSrgeR7vvztP41v.Gg+l0UyGQMmS5AhUCbHcZWvMzlf431.Pvyj5DqBmjeUOG.K.OT0bDMh8s0G4dDAObx5m7GeJj0oBjPpa41geviEK+lJX1gTDg5q9yqH6JhFsFREAwbMpzRlwdhiuwzAD1DPNUkOhaGKu6YkQ2so6D0+vEXPXQR6fdC41EDI9wsn6D0okEgbbrfZtUaWRXo8L9RZRnIGHqwO4OmourJaQaEv+CgVZ0U9Bkr7kBK0xnqyduv01iWoZ4YCByGbMWmBRci9DPXeiPODTesIos1c+v+ymc+e9uqzAvcOI5pBaq8YVbdTEeWoau9eO6SjXdTT+DzNnm7k+0eco8jXjk9m28WjRQZdems6Jd7imcOMd7jnq.d2xfclQ5S6oQ2xirqIF9.a26AiRfs7HNbWLKV5K60ztrnEDeXeLZYY.JVilBGOB2C6IvM88TAiDwM0Dy3.bBNb6XENCwvLI9Pt3xrecZwfeEEcykFbBwYoKOVI.t.BiFTPXgcohiDZLmFMdDTBV0MO0gNk1zCKOcXi.jKUDfzN7mb3UeOVodq9pWAP1dCFvb79NkB9RHIcnYfy4VgNcehS2Sz9HpaAJTAru5ejh8IC7zWxPlEb45c3Cbj44InHXne.kV8gQtpNSuAoCyjSjjuVxJx1RI153ag9wP.ILjdL3CHXW3ZDKvdmi+9Xge5lG7BRJciOzgh6Q4ocEJ9CesEdTOSo6uOgwsu2HjpyPe4YlGvu+Gd9+0urzywwl64AjttbSaVyz1MGNnDQ0DCXqxtF55TYvU4K3.p1yIUAjUo0IaScg+sFD1R1qJUojPDTUrV4JaJZQcfPlVzB64U2mgmxdvLPH.OxrbYI7HhcrqkCpWlhaDKzvhZgcdS98Bj0JaGz3pyzpNyrtDPPm59HelyVskkKSz2tpcwxCY5otHtAkvcwEmdqqd2ydNbUHAkpvN.cWFeS0snswPFruqbNRHWLtuzgcKj0PtbJ1VrIwg4UuAyT+LbH7MoEJ7ivpd..+WchrNeetrchBPhBdc5HCG0VhHZUOJ2hKpFiFtT6ZwYTIAExWTmKrikVZc32guVgcIyndqKLfVimnTW18O9Semdng79e12l9SZe7R8NXUtIzQg.Kn4jdN5FatPotqP4QcfM+ke5+9suWi+1rwK66N4mdZ4WjnC+65CAbHpEmY161La34v2kyvulvgQKx2N7C.Ln8aIFvNydwOP9oTFLpInaUCH5m8MmA5e8kVqmne17ftVzfg9oxWOEUDlOzHKCJHIhJMofUxPSCW5C97kOU9+wrOszfddzCZ92iTXq4DhsZPTeYq80231wUBkms+P8mDE9kgwpxKdlFWOJ5FOaifxm2yNOaihuIZMWyYvpWmA9qmmmwA7S06nQOUuJPFSIOUu2PMFKe6Z83s5M1A8a0S+fqPavVWvkb5DfuqKUZkFzC.M3yKHNYN0SlcIfHybOUHd9NJYez2de+9gxMw27P4NHenbyb.+P4fnwY8P4FJdw27P4dA5gxcfDH3f3NZPLcDaD9BVTefREDft4p+e1IOZE4XbQisCaOGZ5ol1P17+MLMkr3uG3vL68LyHrmyOB64Bivdt3HrmKMB64sGg87C56djAWB6crzjC.TdwfNSlK4c6Ltw+CaiObaA
This gives you the full control over how you want the modulation to behave without going too crazy on the cables. A few remarks:
- the LFO on the right is polyphonic. If you don't want it to be polyphonic, use a global_mod LFO.
- this approach also gives you the option of shaping the modulation signal from linear to (somewhat) logarithmic at the very end of the chain, which removes some of the quirks of the native bipolar modulation implementation.
-
@christoph-hart said in Has the modulation system been "fixed" ?:
@crd I see someone had a good time dragging cables :)
But yeah, that's a bit convoluted, so maybe let's take a step back and try to solve this particular problem with the minimal effort. If you use the filter's native bipolar modulation with a (unipolar!) envelope and and a bipolar LFO, what is different than you would expect?
HiseSnippet 1321.3oc2Y8zbaSDEWx1aacZaZaHEZtoCbHYnjwNMDJCGpR7eZ7fcrSbnEFNzYqz53chztBoUgXX3FeDXXldiKbkOCgibiOALkuA7M.dqjrsjiFWG2DhC9fF8d6ezu268aeucW2xkaP773tJp42umCQQ8Vn18Xhtk5hoLkZkUTmG0.6IHtZgp1pmC1yiXpnpl8oREp4yoD76uexVXKLyfLTkhxy3TCRcpMULTaK8OiZYUEaR1mZGq2qqWyfyJws39.dxhJn3fMNDe.YGrraYPJpWqhIUvcaKvBhGzms3l8Z2k+Mrv9+LpG8kVDoPQk1vDEpVoTWpkYq91pmhhJp0PKOankuHpA0jNP+POvcCZPa3Hh6CTyLNHU7L.I0XPJWHjtGpsgK0QLrEIdtIpFCBHcvfqNNTB6qh5InRbnCLwp13CIUcAgACX4MJT3gZviU9zN9LCAkyz3rc3BRS1xqL22MW94994zFsoNcRsM4mwkaYQbSsYYz0cbCbYlu8KItOT6HrkOYPGAyOoO8ZSlO0Hzpi0QNqFiJZ5PhjqxsLk9J46mNBnD41f297ZkwBrLnDoC5mCwUPkvQsL4HfUGFhxiJS7NTvc.d8ohe.yga5agEIoSx0MQM.9iDwPYfh4QE8hut5LvwJLVN1jBw6gZQEFcSGiYRAifm5h.iQqLuMpRmNDCwP.lCU8Kl1kgS9m+9ge9ahdN9HRPZwfO98Cj6vcs0dJgQbk9thiIw3eLoIFcl3DiMMD.D12Ey7b3djhwm4QZas3sUlH7YI6dnpD8RZdUAyKV+tgdekqEWYKLKwjAxIloFziGJ95mTgggfPaBXMlM8L.iU56hS0a4a4QdN0TzsX7ANT8ZwUuM10DhKFIHhYSxDxMYIORtlLV+SIS80tDJdb9rv9RL2Sh5a46iw1TaGKRE1QDKHAa.FW.xn1A6aI5qM4ZqFbF2oKmQSD02iHboGb.IAYJUCZSg.1UwPMKpuGwhf8hsd680qSYDrK3mHSou3rWqO030CPgvUSlPP6paMir+utlQZT6EPs3V8BIpUoVv1uB.QdTnv3pWnnT0k709Dlw.u0Jm7S56FI7yu5UKnmjZ9.8c8wVC8tZKszu+aaQc3VX2T77u9bjImaBoGuKZfQ8VwiyMYAo2vN8lXNsLxb0AuKghB5ZRm8EEtKlJtSkcjIFvuaHvuNZysK2duH+av6Zu0Y5iL6zrN8+5a+gnj9k7cOhjbuOF3dmR6nUH5qoNAPYb0aCFe7pFAS2.E+4un212SjXo8WdxoJ1rtdEC9EWkFzDRctc7JMy3z746i0vHxrMXuEJfVbUvudGTDg8JgicdTzZoYEW6cBAKBUuZyncaCuoM.5EGKFg7T+Xr7XYFcO.Z+50ert7rg0XidVM4QQitMhAVacxAv2Ltl8I1N7QOsTaaNWzkxNH4INWTuNm6DdbMyDmOqK3va1oiGQDeZJA7FtcerDbWcsEDmfKQQ8qPar9pvuNef74mTBd7nlmOxJmeIJyLgzt2IHnNH5ICuy3KTBQbhseMyuzd2qNa5RdB+imsOa16gZ5YrlVvAzztbNg1dbeAjloAF181wPRxc7say8cMH.JYLhEL4H0LxTIgxEjxAYnHLy.g+A9E0XQorZTiE623+IeCargK+EFgWfsLuwMBz.1MK3eoHOpgTVqnRvkZKKGTX0BJ1TS5KLLjmB8CAxV5iYsoXLOZJFy5SwX9noXLaLEi4imhw73wNF48usoOTdJjyCJZUIrvj5fBbpYU9W.T1VCU.
You define the base frequency with the frequency knob, then set the modulation amount using the intensity sliders for each modulator.
Which frequency knob? How does the bipolar freq knob interact with the other knob? Is the bipolar freq knob setting the amount of modulation? Isn't that usually set with the setIntensity slider of the module? Which freq knob is setting the cutoff?
I'm having a hard time knowing where the modulation starts in the above snippet? Is the modulation starting and returning the the cutoff amount?
-
@crd The Bipolar Freq knob affects the cutoff point, it probably shouldnt.
IT causes strange behaviour.If you set the Bipolar freq to 0 , turn on the lfo .
Then you move the Bipolar freq to the right , and it adds to the cutoff.
Move it to the left and it subtracts from the cutoff.
At no point does it add and subtract from the cutoff, which is what it should do.Also the amount possible is too small.
That goes for the envelope as well, the envelope should be able to open the filter properly.
Desired lfo behaviour. Add and subtract
https://youtu.be/im6ysEiYIcE -
@christoph-hart said in Has the modulation system been "fixed" ?:
The next step in complexity is to use the native filter module, but add an envelope scriptnode modulator to the frequency modulation, crank up the frequency knob to 20kHz and then create a suitable modulation signal that matches your desired behaviour:
HiseSnippet 2746.3oc6arDaabbcojF4PZGG6DmOFvGlVT.aW3pJJ+IsH.Uz5mspsjnMUbrABhxvcGJNUKmgY+HJ5zBT.2CoEEnGxIeH.s26Ieq4RcQOEzVf.XfdoWbQO0a9Z6kz2L6uYIWRQRKoXWGi.aNu426+ucRYGgI00U3XjK+5saRMxcDTk1bu5yWmv3FKufQtihVg35QcvAflqcShqK0xHWtwuhDPt7SXn9ySlcNhMgaRS.YXbKAyjdcVClWBzxktFy1dIhEccVCsUegRKaJ3yKrE9.9LNZZilDysHaRWkHW1XHibStnEyS3Twi3QcMxMwbBq1UpKZwCV+sXtrp1T4fhFUfCJ.7RBaKIFKgZLeclsU4H510.NzxIbgwC3Bm.sByhECOgabL0D3jcnyOxMVZza7TnWQczaZMzKCTJmFJMQ.JcbTESGVSujYj3ygQKyAgSMBv10Qkf0Zj6gn4EvB3dS0frEcIGXP7FNykld5ygg+5ruSMetoGSvwB9pBO5Z7yb1Bebg7E9YEvcNUsZYNm7ZbD11TmLmVJoc52FOC2uQUpy4vaSr8owKDH+z7TTu4o5hby.pVagB9xbl2ZMo7doHXDxpfe8tKu.wiHEDgvf00j53wjnPtEnaCZ0Ahk7nEnta4IZB50cIy.sEgkuMwKsJjztIbBfGjRtIENbWlWac6p8L8pAEEONpLyyrd133XYfi.mZ+.GCsFeYzh0pQM8RPvIPKc6C.SOTv8W.cYNwtsKMxlKZXwT3vb9.V5TgcWMeZOrTYGPag1JTaIQlN9.ivE6O+5lBeOFeyUHdNrc.bdU+FU.OnlTfcw4TaoQStwjp2AimVNVhDUnbK0fuB9S3jEkiyENYwnI0kIud.kbXz6Q1lphUnXJutZbMgSC7UnbpiTgpXehV7kCZzhlCbzh0L8.TXcGB2sovkVT+j6XtYzmaApmOO8xC.kZURxaIf7zV2IJEAbFcfkI7TGFLN0IshTLEM7wytHm.B5JTfZrVy0DHVIuSWWorusK88XVd0KpuwDvynC9pDGKPtXlx5b79E3r3+2D374.evobvjOBGqvZzzltHeapMDnQgiuJDYoFw21KBZZyoUDbQy5BNKkf9lTvKvlaRSo+jIAcYOOH6Jc81aRsoD2DSrRaU55LNk3.7I5H5qu3PmmSlxq2BEftXoO.7yuwNG+EmXmgp1uJprvtcfh5RLauvXn4QAC5WHBCikbnejOkalvs9jGU5FIq.WJsp4aU5F9D6DtK9jm7K9SywZJrINOsb9cQSdhAT83MPwDE9qe+OGJ.SOYXsEQdZhwaEJepvYwQSiimeWbIgu2B+pRc5R5C+uW4QY6RJpnkygFlBDP6UIRkj9+pTuVBmsTbqveCR0.dgqBI2fFxK1nQBu3x11hVIp6xbkUflWznIKTPCrofgQomc4FBe3RCyQK2XqpznmbIhIblsKSf7q.eJx5Y.UHpyTlwpR8EWRULHvMJSbfpnAKNYALpKIJ0ofjAAjpgj3UkYOtbdI0Od.1fjW2gPtMAaKidhYASqewix07xnZrcN+LaT0V.gmRcYuo1kouH8qI+j124AeUpq51n0qybwsfLqvVzZv1wd0o3pPrNbsHiwBmoE8zvBbaHDd0wLOLAWE9aWAtEEyoTK0lTWKVcsER6DMlXFSiXNAJ37nVazLR.jllNkhl.86oxXkYSX5WaZ9oVUpA14xQfI1XRbYRjxY4sjlOR1bPrc7MIMfZWSbEsNwYSpm5.5Dnr3B3HV1RdXR1mQrVkD1gPAmcPBspREWgwCuOszeI6zArmLqgl5ojNh4.4lXPOh.Uz.vW12Sz.bGnvACsSC0wo8au+8+Cy10oU52TphGsoVkbp0IugWAUQIlfBtTkizAZbmR8615It2wsESO4QQ7xt4XZZYgBiT5UEP.Cn9TDKqdZQlgohTKZrTxhb6wxBMMzTBci9p6dDzxt2RNqIwNhW.mlFO3nHcufF6h6yzrgG792YWLrxx1FgjL2dwzi2eaMuOlNTfSnbj3x1jSrgeR7vvztP41v.Gg+l0UyGQMmS5AhUCbHcZWvMzlf431.Pvyj5DqBmjeUOG.K.OT0bDMh8s0G4dDAObx5m7GeJj0oBjPpa41geviEK+lJX1gTDg5q9yqH6JhFsFREAwbMpzRlwdhiuwzAD1DPNUkOhaGKu6YkQ2so6D0+vEXPXQR6fdC41EDI9wsn6D0okEgbbrfZtUaWRXo8L9RZRnIGHqwO4OmourJaQaEv+CgVZ0U9Bkr7kBK0xnqyduv01iWoZ4YCByGbMWmBRci9DPXeiPODTesIos1c+v+ymc+e9uqzAvcOI5pBaq8YVbdTEeWoau9eO6SjXdTT+DzNnm7k+0eco8jXjk9m28WjRQZdems6Jd7imcOMd7jnq.d2xfclQ5S6oQ2xirqIF9.a26AiRfs7HNbWLKV5K60ztrnEDeXeLZYY.JVilBGOB2C6IvM88TAiDwM0Dy3.bBNb6XENCwvLI9Pt3xrecZwfeEEcykFbBwYoKOVI.t.BiFTPXgcohiDZLmFMdDTBV0MO0gNk1zCKOcXi.jKUDfzN7mb3UeOVodq9pWAP1dCFvb79NkB9RHIcnYfy4VgNcehS2Sz9HpaAJTAru5ejh8IC7zWxPlEb45c3Cbj44InHXne.kV8gQtpNSuAoCyjSjjuVxJx1RI153ag9wP.ILjdL3CHXW3ZDKvdmi+9Xge5lG7BRJciOzgh6Q4ocEJ9CesEdTOSo6uOgwsu2HjpyPe4YlGvu+Gd9+0urzywwl64AjttbSaVyz1MGNnDQ0DCXqxtF55TYvU4K3.p1yIUAjUo0IaScg+sFD1R1qJUojPDTUrV4JaJZQcfPlVzB64U2mgmxdvLPH.OxrbYI7HhcrqkCpWlhaDKzvhZgcdS98Bj0JaGz3pyzpNyrtDPPm59HelyVskkKSz2tpcwxCY5otHtAkvcwEmdqqd2ydNbUHAkpvN.cWFeS0snswPFruqbNRHWLtuzgcKj0PtbJ1VrIwg4UuAyT+LbH7MoEJ7ivpd..+WchrNeetrchBPhBdc5HCG0VhHZUOJ2hKpFiFtT6ZwYTIAExWTmKrikVZc32guVgcIyndqKLfVimnTW18O9Semdng79e12l9SZe7R8NXUtIzQg.Kn4jdN5FatPotqP4QcfM+ke5+9suWi+1rwK66N4mdZ4WjnC+65CAbHpEmY161La34v2kyvulvgQKx2N7C.Ln8aIFvNydwOP9oTFLpInaUCH5m8MmA5e8kVqmne17ftVzfg9oxWOEUDlOzHKCJHIhJMofUxPSCW5C97kOU9+wrOszfddzCZ92iTXq4DhsZPTeYq80231wUBkms+P8mDE9kgwpxKdlFWOJ5FOaifxm2yNOaihuIZMWyYvpWmA9qmmmwA7S06nQOUuJPFSIOUu2PMFKe6Z83s5M1A8a0S+fqPavVWvkb5DfuqKUZkFzC.M3yKHNYN0SlcIfHybOUHd9NJYez2de+9gxMw27P4NHenbyb.+P4fnwY8P4FJdw27P4dA5gxcfDH3f3NZPLcDaD9BVTefREDft4p+e1IOZE4XbQisCaOGZ5ol1P17+MLMkr3uG3vL68LyHrmyOB64Bivdt3HrmKMB64sGg87C56djAWB6crzjC.TdwfNSlK4c6Ltw+CaiObaA
This gives you the full control over how you want the modulation to behave without going too crazy on the cables. A few remarks:
- the LFO on the right is polyphonic. If you don't want it to be polyphonic, use a global_mod LFO.
- this approach also gives you the option of shaping the modulation signal from linear to (somewhat) logarithmic at the very end of the chain, which removes some of the quirks of the native bipolar modulation implementation.
This is awesome!!! Thank you for sharing this.
In this example, how would you `invert the lfo?
How would you go about summing multiple lfo's and a midi CC?Never mind -- I see the split container makes doing both those things easy. It is already summing them...
-
This post is deleted! -
@christoph-hart In your snippet above, only the first parameter still has the skewFactor available in the Edit Parameter popup.
This is something I mentioned a while ago, and to get them back I had to modify the XML...
5th point here: https://forum.hise.audio/topic/4555/scriptnode-bugs?_=1636907072550
It is not just about the skewFactor, it also happens sometimes to the valueBut this apparently happened to you too, or is it when importing the snippet here that they disappear?
-
The scriptnode solution you posted is working really well for me and my use case. Thank you!!! I am glad I switched from Kontakt. -
@christoph-hart Trying to extend your snippet with a simple LFO, I get a zippy effect I can't get rid of...
As soon as I add more operations after the oscillator, be it internal or global, a zip effect appears.
I tried all fixBlock and/or smoothing config I could with no luck, so I didn't keep them in the snippet.
What do I do wrong???HiseSnippet 2963.3oc6b8DabiUF2dl7lzIM8eayxtKpHYgPhthRzLoocohCwM+ciH+YZmztaEqH6KddSFuwisw1SRlBHgT4vhDRbfS8vJUti3PuAWnHNg.jVoJ1KrG5J3B25UNU9d9YO94Yr8XOYlPSWxgz326422uu++89rcqXYnPrsMrDDKtUaShf3jnps0cZrPCrptvpKJHdVz5XaGhkDan4aahssI0DDEyuBc.whiI39yymadrFVWgDLjfvcMTUHqo1T0IXzJxeOUMskw0Hao1ja0yJuphg9BFZFs.7jGURvDqrGdWxFX5xxgDDKrTMUGCqpNXGhsf3XyaTqc0FFGnyV+cUsU2QiPunrPUXiXCurgVMJhoiJrPCUsZU74aaAXSqDHExyjBSgVWslZmwCjFm2cBof6fWdHlKL7xGBdk4gWIN3EAjD4fzXLHcATUEKUSmfYn34znU0AkScLH14gBasBhOAsfAr.cmoah2irrEbQma3xWuToqHA+5s+t0aoq3nZnKYnuggCYS8K+1S7iln3D+jIj5dp50ibNJYrLzzHVQNMUSakzMdY8VM2gXcEo8wZsHcVHv9gkon3ko7pbEFWysPC8U0Uc1zjnGmgffmnB9q6r5hXGLUQ3MFrNShkiJEBhKR1GrpYpkhnEI164XXB108ny.qEiZszvNgMgn9MdS.xfP5MpxQ2V0oMueU21UikN6pjM6SKbu.phpiRinwatHvKH0F030yK8LnkpWmn3D.1wPK+9I5RNTfRH2SDCKSftoNVqsMw2uz+xxgvy7s.DaUU89bw8dhbEKvhhbfmEUfdOepimTNw3IB21nkip9tqicrTODv7FsZVEhxpP.QmtNQi5XIli5BvttD8ZJHpRzq4dwKfe7lrL8ZQuIK6OIu94TLN4qhVQyXGrVfUE3LApJOYzWyaZoNyK0YAkSHQyml1DMloNQyPSRKN1nJYxwpS+E6Q0XOTCSEc149lJ7bLHiPqs7ldRP3uB.Y49Cx4UMMzvVz4W1h7CaQzUBMO0ZYUcdKq2CuOotgUyvdmBxqQ1EnI+8tEoooAT9jB+sWsoggSCv4KrM3TxqYXXtjNFjH032jJMv1zrr1DG9sYgV1NFM8wha0PUcHltooD+9nqO6zvO0+VzeeiEfec0MGNWKjghZ5iqQtTa7QUpczdT06K44HYHti8zI.DmXV87eoLq9wcRxWmwtmFQcpcOzkKy95HemboUHPlvdiqwkMT9yK8nge1vMUb.HrkEV21zvlTlem6ZtY3maQhSK8vKmMzLcGOcYf8Jy6L3O3L7QHqf0CsYv0g1o0opI+Ke1brfoUI.2TaSaEfYoxtPaPKMax6oVyoQY9aLX3Y3G9cwV05NZd2EJj4bbGum.8XMlxQ+fMCmCLWzGiUUaZpQVReehFb5MWL9Zvw0piao43OZXWq0MzMLaXnqFRoeaBDQX2cIV7XORF5lNNXk83sguMQi.Iz6Lj7dxqAE3hs.4DIovqCddVwTpudSDCtRz3ARuZbfzSbotFpl7uFphgValA7xpZNdGzpHhcQRGpRPn2xg+3mJeqfUHIG1j8MkuUKrVfj9Cuyc96+QuxqSkVX3bHqjLU9JnP0jMJruGvSxLNC0ukWS87iF0gGbg+k7lUxe53NoSDgsj+kxQD1RPHR90uagWAkkNygFVcmHnuaaPbNvvZOWok2eCRelrv1EjaS7jEa2LPVbSMMiCBL8oMlxcnELZZp5ozAwD6R+x4tYSiV.Q8poSL2FtV2EVFq.6Y6JXndLHViheGIlVoiYUhXITWXAoQErEtIA79ncNzkH9kZwJdD.USJy61e67z4obedFZPTxMNx1D7yDhEYro4IbZICxiooj4Ln5pGd0Y1dGMCHEVHh8FbDieQ7joXAs683WzMo3Aku6gXt..jiiOmBY6dVYRssM8EZgwwkbwAXSNcDqLZvvCfvx.tV5x7MoWAtE4nXo.xMX2col7TQCKmszswMMg5N6DJYKr0tDG2Mn6A8DtqVitY6PKAnik.crwQr8tSG.DystptG83JwEeXWi874D3Lon7QGIf3XocKXlUrguYKGilfKrKFD31MTW61id3C+cy0ytAAZnMhfqkltqiRgygB27itfw8jShZwh8tnVG9oHxWV1qDiyJySYDxtZBDH.ZLMtVsX8hh17VLWHcg3PVWvYgFRoKjns6jnUsuKcVErlur.1MNW8yh3ibIzmPdgECO9CtWhNV8yKGgnh43D+c1o1nsZnZKc.bJNIEKBHSj.+cIa0c0wZvehcjfosgCWCWXYzZ2Fty6yWWQx1PRstjpy2zVRm1oN08gAUcX63NvN0ZGGK.EjZR0sLZ5d2tVFwaA3y5YSq+7+vQPqGJM.tQM6thHd9NZxoYylMkkHJQKoyQ6ABGu5wErLlBUOfVGdPHvb7C38ryzItUSX20x6cVZtYMxg9O1sEUgjZ31rGWhcOiPwmdMxg98UYInBkZfYGqcn.iENF4o3zPERke4G+mhLpV08HGvj+9MfYi0+yt5xS4cXJgd16gQPtms9NUlikjlQl0HfVWHgTCiLFcb3DzJ31bz9I+mO4g+zes7w.sKfdWH5xHVDWDUskMM.XxzYDwhEQ9cLfaid9m9W+ExCkrkxew8+YgLjVnk098jY9YyMTyLW.sBDcKBwYDERMrxygXBSs5FYOE2CdbehZFYhshHcfVp0TCSrKxQL+EDWEx8V1d.oD4H0jHif9a1CqYQlla5rxZYMPrXn.wgi6VH6VQmWNdqH9Rxi1oLkEc8MjYOi9fVdj5hfcgSu6XoXg8jtTAN4.Xlmb.6QjeVXhjwxRceZjCEYd.DA+sQectHlF11sEvai6xMYpfxlBVQzdJw4q9kjRmxm4TdwbfvdR48gWbwmFaoSe1XBu+CFfRJxLwiLe6u4FW8e9yke0HG3oPto3JmsTfuP3yS15O+fBK27Bb3aB+zlk6edyjaq0vCe74ZOCWt1xYKYa1DhCU+39kMtvQIabOdS8KG8.3HC4nSWgyOn4eattyl6sUtO2ljob5ykGOSm9L7ENJQQRRp2+79GARC4ehkzopBgQDs8pkH49ix21qhP4.6NSOGG3rr1O4OWXe3Nu+U8uo14hsNlPsHZjoIXaPuZhPM+zjf6p49mlEEychLF+ZrPbbJaK9o7aK9DncXOsvxCsVimdQ1RGZZQrscexPzhdFwAe4MCGGo.UbzUEoSxLBYyj97bmrL+3z3QTMB8453M+QKQZVMDKPaI8LCfQXzs1cvMBisx6wOlUZwdb3BCeg.CHUgJw3.xr+fe+pSl6y5WJrmEQ5aA4TQ6G8qJ8u7n8J3lMw86oF4ZhD2isHilqozUc7QkvNaZ8ddNDrCLjsyS7QBivySjOTuw108UWO519AI53lNiX7nktqnevuW8y1MHIbxZU2iiXXJwDNAx7rkuISVqCV9lx++7MuDkuQXpe6Jew8cd4JeS4zluoelqm7x2DaGv3Kjt.THspY2mlwqNZXhz+FQEpL5g5azQDmNMFtAgLMNHRMNc7z+HiREujx9YNkLuZ8hnxSWp7rWa1qc0YJO60g+4FBQxqevm70IeT6KHGem8gbobfgoLmm1Hgdw0rx89TUepbXys+xO9e+NzFA4srBnxkJUp6FkyeI..+nwQ9ZmEYr4r+BZ48xKdZzR56689FlVerN8vJs7A6EqIk.OZZFAvWa4MiE3Qy88rnzA+POSyPbgWedFXo+DTlnpIAbJxLObc3bHWp3+XtiJOv2cxz1+yApy+yaXrWSr6qP6H8qX+BtJkSNe0.uEx6US28yz6jCtOK5Vmb.K8aS5vSNv8MPaZqLij6mShz+6+dRNN99CONnQSrhkw1dmvx80uycDfu0c+Oxkhn0oWKUVXeuGJNpzzkDnOgusUTneyLeaP9D88Ly.bOWc.tmYGf64ZCv8b8A3ddmA3d9NIdOzunPuhwo1+v.UVhc3dwfyilW3+BbidfxC
-
@Christoph-Hart Just seen the new commits, I'll test this asap :thumbs_up:
-
I am having an issue with polyphony with the snippet you shared to modulate a filter cutoff.
Regardless to whether or not I select polyphonic mode or legato with retrigger for the script envelope modulator, I am getting dropped notes. It is mostly happening with block chords. -
@christoph-hart said in Has the modulation system been "fixed" ?:
The next step in complexity is to use the native filter module, but add an envelope scriptnode modulator to the frequency modulation, crank up the frequency knob to 20kHz and then create a suitable modulation signal that matches your desired behaviour:
HiseSnippet 2746.3oc6arDaabbcojF4PZGG6DmOFvGlVT.aW3pJJ+IsH.Uz5mspsjnMUbrABhxvcGJNUKmgY+HJ5zBT.2CoEEnGxIeH.s26Ieq4RcQOEzVf.XfdoWbQO0a9Z6kz2L6uYIWRQRKoXWGi.aNu426+ucRYGgI00U3XjK+5saRMxcDTk1bu5yWmv3FKufQtihVg35QcvAflqcShqK0xHWtwuhDPt7SXn9ySlcNhMgaRS.YXbKAyjdcVClWBzxktFy1dIhEccVCsUegRKaJ3yKrE9.9LNZZilDysHaRWkHW1XHibStnEyS3Twi3QcMxMwbBq1UpKZwCV+sXtrp1T4fhFUfCJ.7RBaKIFKgZLeclsU4H510.NzxIbgwC3Bm.sByhECOgabL0D3jcnyOxMVZza7TnWQczaZMzKCTJmFJMQ.JcbTESGVSujYj3ygQKyAgSMBv10Qkf0Zj6gn4EvB3dS0frEcIGXP7FNykld5ygg+5ruSMetoGSvwB9pBO5Z7yb1Bebg7E9YEvcNUsZYNm7ZbD11TmLmVJoc52FOC2uQUpy4vaSr8owKDH+z7TTu4o5hby.pVagB9xbl2ZMo7doHXDxpfe8tKu.wiHEDgvf00j53wjnPtEnaCZ0Ahk7nEnta4IZB50cIy.sEgkuMwKsJjztIbBfGjRtIENbWlWac6p8L8pAEEONpLyyrd133XYfi.mZ+.GCsFeYzh0pQM8RPvIPKc6C.SOTv8W.cYNwtsKMxlKZXwT3vb9.V5TgcWMeZOrTYGPag1JTaIQlN9.ivE6O+5lBeOFeyUHdNrc.bdU+FU.OnlTfcw4TaoQStwjp2AimVNVhDUnbK0fuB9S3jEkiyENYwnI0kIud.kbXz6Q1lphUnXJutZbMgSC7UnbpiTgpXehV7kCZzhlCbzh0L8.TXcGB2sovkVT+j6XtYzmaApmOO8xC.kZURxaIf7zV2IJEAbFcfkI7TGFLN0IshTLEM7wytHm.B5JTfZrVy0DHVIuSWWorusK88XVd0KpuwDvynC9pDGKPtXlx5b79E3r3+2D374.evobvjOBGqvZzzltHeapMDnQgiuJDYoFw21KBZZyoUDbQy5BNKkf9lTvKvlaRSo+jIAcYOOH6Jc81aRsoD2DSrRaU55LNk3.7I5H5qu3PmmSlxq2BEftXoO.7yuwNG+EmXmgp1uJprvtcfh5RLauvXn4QAC5WHBCikbnejOkalvs9jGU5FIq.WJsp4aU5F9D6DtK9jm7K9SywZJrINOsb9cQSdhAT83MPwDE9qe+OGJ.SOYXsEQdZhwaEJepvYwQSiimeWbIgu2B+pRc5R5C+uW4QY6RJpnkygFlBDP6UIRkj9+pTuVBmsTbqveCR0.dgqBI2fFxK1nQBu3x11hVIp6xbkUflWznIKTPCrofgQomc4FBe3RCyQK2XqpznmbIhIblsKSf7q.eJx5Y.UHpyTlwpR8EWRULHvMJSbfpnAKNYALpKIJ0ofjAAjpgj3UkYOtbdI0Od.1fjW2gPtMAaKidhYASqewix07xnZrcN+LaT0V.gmRcYuo1kouH8qI+j124AeUpq51n0qybwsfLqvVzZv1wd0o3pPrNbsHiwBmoE8zvBbaHDd0wLOLAWE9aWAtEEyoTK0lTWKVcsER6DMlXFSiXNAJ37nVazLR.jllNkhl.86oxXkYSX5WaZ9oVUpA14xQfI1XRbYRjxY4sjlOR1bPrc7MIMfZWSbEsNwYSpm5.5Dnr3B3HV1RdXR1mQrVkD1gPAmcPBspREWgwCuOszeI6zArmLqgl5ojNh4.4lXPOh.Uz.vW12Sz.bGnvACsSC0wo8au+8+Cy10oU52TphGsoVkbp0IugWAUQIlfBtTkizAZbmR8615It2wsESO4QQ7xt4XZZYgBiT5UEP.Cn9TDKqdZQlgohTKZrTxhb6wxBMMzTBci9p6dDzxt2RNqIwNhW.mlFO3nHcufF6h6yzrgG792YWLrxx1FgjL2dwzi2eaMuOlNTfSnbj3x1jSrgeR7vvztP41v.Gg+l0UyGQMmS5AhUCbHcZWvMzlf431.Pvyj5DqBmjeUOG.K.OT0bDMh8s0G4dDAObx5m7GeJj0oBjPpa41geviEK+lJX1gTDg5q9yqH6JhFsFREAwbMpzRlwdhiuwzAD1DPNUkOhaGKu6YkQ2so6D0+vEXPXQR6fdC41EDI9wsn6D0okEgbbrfZtUaWRXo8L9RZRnIGHqwO4OmourJaQaEv+CgVZ0U9Bkr7kBK0xnqyduv01iWoZ4YCByGbMWmBRci9DPXeiPODTesIos1c+v+ymc+e9uqzAvcOI5pBaq8YVbdTEeWoau9eO6SjXdTT+DzNnm7k+0eco8jXjk9m28WjRQZdems6Jd7imcOMd7jnq.d2xfclQ5S6oQ2xirqIF9.a26AiRfs7HNbWLKV5K60ztrnEDeXeLZYY.JVilBGOB2C6IvM88TAiDwM0Dy3.bBNb6XENCwvLI9Pt3xrecZwfeEEcykFbBwYoKOVI.t.BiFTPXgcohiDZLmFMdDTBV0MO0gNk1zCKOcXi.jKUDfzN7mb3UeOVodq9pWAP1dCFvb79NkB9RHIcnYfy4VgNcehS2Sz9HpaAJTAru5ejh8IC7zWxPlEb45c3Cbj44InHXne.kV8gQtpNSuAoCyjSjjuVxJx1RI153ag9wP.ILjdL3CHXW3ZDKvdmi+9Xge5lG7BRJciOzgh6Q4ocEJ9CesEdTOSo6uOgwsu2HjpyPe4YlGvu+Gd9+0urzywwl64AjttbSaVyz1MGNnDQ0DCXqxtF55TYvU4K3.p1yIUAjUo0IaScg+sFD1R1qJUojPDTUrV4JaJZQcfPlVzB64U2mgmxdvLPH.OxrbYI7HhcrqkCpWlhaDKzvhZgcdS98Bj0JaGz3pyzpNyrtDPPm59HelyVskkKSz2tpcwxCY5otHtAkvcwEmdqqd2ydNbUHAkpvN.cWFeS0snswPFruqbNRHWLtuzgcKj0PtbJ1VrIwg4UuAyT+LbH7MoEJ7ivpd..+WchrNeetrchBPhBdc5HCG0VhHZUOJ2hKpFiFtT6ZwYTIAExWTmKrikVZc32guVgcIyndqKLfVimnTW18O9Semdng79e12l9SZe7R8NXUtIzQg.Kn4jdN5FatPotqP4QcfM+ke5+9suWi+1rwK66N4mdZ4WjnC+65CAbHpEmY161La34v2kyvulvgQKx2N7C.Ln8aIFvNydwOP9oTFLpInaUCH5m8MmA5e8kVqmne17ftVzfg9oxWOEUDlOzHKCJHIhJMofUxPSCW5C97kOU9+wrOszfddzCZ92iTXq4DhsZPTeYq80231wUBkms+P8mDE9kgwpxKdlFWOJ5FOaifxm2yNOaihuIZMWyYvpWmA9qmmmwA7S06nQOUuJPFSIOUu2PMFKe6Z83s5M1A8a0S+fqPavVWvkb5DfuqKUZkFzC.M3yKHNYN0SlcIfHybOUHd9NJYez2de+9gxMw27P4NHenbyb.+P4fnwY8P4FJdw27P4dA5gxcfDH3f3NZPLcDaD9BVTefREDft4p+e1IOZE4XbQisCaOGZ5ol1P17+MLMkr3uG3vL68LyHrmyOB64Bivdt3HrmKMB64sGg87C56djAWB6crzjC.TdwfNSlK4c6Ltw+CaiObaA
Is anyone else having issues with polyphony using Christoph's snippet? (If your testing make sure to change the orc from noise to a saw or something.) I am so close yet so far away from having a bipolar mod system....
-
Would anyone mind testing Christoph's snippet to see if polyphony is consistently working for them with it?
-
@crd Seems to be monophonic here.
-
@d-healey thank you for confirming.
@Christoph-Hart Is there a way to make your snippet work for polyphony that I'm missing?
-
@Christoph-Hart Sorry to be a squeaky wheel about this but I really need this functionality to move on with my project.