HISE Logo Forum
    • Categories
    • Register
    • Login

    Has the modulation system been "fixed" ?

    Scheduled Pinned Locked Moved General Questions
    49 Posts 7 Posters 3.5k Views
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • C
      crd @crd
      last edited by

      @lalalandsynth

      Maybe if we ask very nicely @Christoph-Hart will implement envelopes & MPE with the option of modulating +/- from the cutoff point...

      C 1 Reply Last reply Reply Quote 0
      • C
        crd @crd
        last edited by

        Here is a snippet with a modulation system like you'd commonly find on a poly synth. Scriptnode is pretty amazing. I am sure there is a more efficient way to do this but this seems to work pretty well.

        HiseSnippet 5447.3oc6cs8aajcdenjNThzZ0Zu1qSPQuPXDjJuwVdtxKcyVIaIauBwxVvzVs.oKbGQdD0.MbF1YFJasKLv9Pdt4kh9ZKP.5iAnE48tv8k8g.j7OP.1TfhBjm7K6CMujdtLWIGx4hHoGpL7AaMy412sy246224LyrugdKnootASgRO6rdPlBqBZdll0waerrhFyt6vT3x.yVFJ8rzzaCewobxL26rdxllv1LEJr3Cw0pPokXXX9pu328uu48jUk0ZAsuE42A5JsfORoqhk2c2eqejhp5CjaCelRWe0VbqcaoqsstpdeDEsHfkombqSj6.erLtZK.XJT79sUrzMZZIaAMYJrz8zaeVyi0eoFs9GnXpbnJDeAGSSTGQu8CzUaioX7eyr8wJps22gyMYPc59dxgEoxgqA1Sosh688KOvETwqE9kGEVXbjGWJIuE7QdKQIuq.ZRzJdkfosKA1UyBZbjLRE3mrn0kovWA1VGUAMqM5JeB7AFnKbav5UYYuUEz+byO9n9ZsrTz0pnq8XcK3SzV+lk+hxkJ+5xUFrniNJzxvCigtpJzHzhwZciw0v00528PnwspbprZenaEQreP4aw3IeaQ4ZeUTWaWMEqmzCZe830.L1hMze87c2Q1RFoTJXeOT85AMrTvjSgcfmhr1opnRfcflmXo2CYuGS8WIPGjY1d5sCS6sv26CcUelPqOEpz4Xq0EvJrxkQbnoERZYTwtGdj7YPCtJeRExz4M5.st+QGAaYs9MBTga30X66+izzOzD0te7mgJw+89wreF51NTfbaxcW+FPsSuaW89ZV23VU3jX+HjQDghBzTtPa5idvS3BzVNZaCzT9Q0T9.MkOjlJLplJDnoBgzTwPa51ayMHuxwNTakFUaGhYCowUCswG.U0aoXc1frbHcPsP6fmJq0Vu6frMs4kKejtQk0UPsi8iqnT4GVoN5+9A+.7ztJneA5dkOCa7s9M5hVN.0Q2XeYMrMznqmhFpZ2laCxPUJ75H+JLMMtpXZA60T4ywCI6Frbn585ALwpGJeeWKKzJH23VTsE+vhq5AnS69N7ZPoRV1wzI1BEr+saL5QpcaU395lJXednpilBuwvSYZDJ+rCrk7YT1gKL1oQjrSinYmFCvNORQCJafYn6bmQLZwhk3B2CRy9lVxX5kZTGBWgZ3.r0XpheioApS3tgdJTEJaBoiuPniOWjhUupLZ4pWchRv5a.imjMbujeJZUMWaeogoG9nEq7gxVCTovczhqiiGGaC1PnAgnoAgPUsDmVspnnEvwyMKWpEt11ARrsrp5gHO.qqq4uV1kh6l67QkUzTQJB+gg3tnlS7Hsz61CeaK+gjnbz5jKp7Wi7bhFXzsJEX0ULgf7.YnbXeK35CTzKUrZcLmKKmfl1S279NDnC8f6.DwZpqB2nmghlEkz9HpK9RutbInpIrBgHGc8RECvkXFPC1wGCrmLJ.E4CMoTxMu4GWB0Wut7qQjiiMUGrB0VC3OjiaFtpdP0Gh59n6fVmaXEcHFEgqqQq+JqhL1ZCeExV2ey1fbymbjW6HBRp3AsrJtTaii6bGDkg9+VH2MUX+qP+0P1PkHU7bYGMArjFmoDV2f9GayoRQZPctLolbFU3NiR7n+8PCn7IeLQindjNmiJgKspDt5zXHinZ7AjwdhQ2Q7GljAjK5ADEi25CJI7FbaofiXf2QLvmZwPiXIFDmbhgFwRLHMZw.0pv0dvQVH3HKDRqrfmMVxhpSLYAd.igrn13jECIJPnVbjDhoVRvEKIQ8ImjfKVRhFwYxgmbvUPHkZAAerDDbrSNIAerjDbbicBRH1EmZCH0QlTM0xDg3ISlbtNwiXbjIBIZhhAAfsi3nVpEGhwSbL4bghGw3HNjh8rEGQhLA6cIGYRchLYbThjKSElIWaLzW2dqQj8V0w1alTPmt8GGajcXsw1gFTTjdcHWjcX8w1gGi.u40a7Q1aMFau0I.yJDUuwMJo2qwIdY37.mmhX2TDWXMaJDUUKRxdWyNYuMUUZCMXTZiyTuKFEFBC3sIHucSlXzAqB7xdZfd3es2m76heOvGNMXyOwoGDNO8vk.toTMsjfWdUSWObYPvjqltdYMf+Lrlt9XE.MakAZ8e+O8M+ewRctLfjav.M9K+m9U+aaEmFWBXmDtfM+Me62rY7ZtcNzBz7sJ+cNHVidQ.NQUCJz9daEOC.uzLEnG9leVueyloZ6ZvSfsQxirPi0T3WwT.T.Szm47GlVmgcxTDfyQ.Svz342vnqhuKe6+oY+iNR4UXmLOh4HE0tlHGx81sqbGTe8Afmi7c2FdjbeUqJlmfZoph1Iv1OSmr2n3rJhFdv9xZX6sXvBAbhP3g+44Sdf2OObqByk7ffed3Myc7feW4AmNzd9QM3awjfSGla3ggVNK3Th4F9XfETCNoHiwEuWzKoGbFwWOD86r+lXR8Kt1O+g+1O+mroMk6doLpSJU7x+kTVwgQPzUh4ivEVekwVTNrHfbrb7yhqFYbGAmu70wUCgFzYJu6moJGi3gBN8I1rE1RKD1ZBQ3qFiHwBNiYtPebonhPL3rne+4TYLqMpBDpZvoK+92g1UCe3jtLXO818UksBdt2dHMcA3Bvjj+inD9TjogH0y7CiMAGFN1POLbbggyNlj6U.6i2Kovo2EBgdwmytoL8ZezBeO.8nX4QrKAdveaZOGgoiTVgRJ+IfGppenrpm.DgRBQUP54Q6Oyt3JtkWwsBbi5ffh98qi6AAsWrOHnEVLnDYw3kVmPNMkK8N3vdN4suu5PpFyI5LRtXSwEV1GIWjRx+o1d+vZ0CjMTj0rboSB4Wjf7LZJ9dJ8zUkM7eHV+uAdYCrmArmrA7Y56qJe15lxc6oBeJh2tUE5eatOz3dnvgOY3DI1iRzjRW+Pj+SnwHSg4DO6lQkCSvDxX22AW8wPqWpabBVgUv9uQF.XcA.qKXtqpp9KwqioX6uDIxI2aec0y5crtlRK7sn0.hLD0zfp1KlgVAaAhCzGSiP9AxsPT+Y6KacL1SbKGeFazx09kNnd5eL8iasybd557nQqKYUU7Q+dQb4l9FFb+rJ.svW8WbHVMxDXbutuw0WcN+C4U.uzPtmtYKjqKrAMWvw8p9FWM8WfVHWIkCZg.7o2.xLj70.tguhS1ng0npvW4jmrcTL6glLcOxLBygtC55cwmnE7hV2F4NXeYC4tPKn84n24JzPsmh1Az7wA.ravxrm7qbuVDccS23X..Nz0T2B6gY4CFJ8o953hdcbQbGy6qmKB3XCz0WCUCxgVC8iSrAKGWUzLlSfujJBoUfmuQCVQop77Bh0qUWx9rz+.C3+PenVqy7nm+w27se82t9ubSlQwnbAXTD4TcDb5pjtuxSwy0XBzbl3JD4FoP7gH2FitSWJpNE2IKC1+XLLh.ULw8RQRPiCRJdofMn8SfRJTv9Jz5AKPkX6Zd.tzVxpN8Hxsiu4HKC5AkOYfoiWhN8.WRxlXrzjahQPV1KlzmIazAZMoECk.lJc3QP4CJHVCzEu8sNkkHYwBAllWH4FSzaMfwzD0N3d55mzUlr.249gzHQQwvmGESdTL4QwjGESDQw71MyJQw7y58Im9Ik+eyihIOJl7nXxihgDEiPdTL4QwjGESdTLQDEyk2JaDEicumGBSdHL4gvbgMDlxt6.Fxys2531qZs81IaGjdtI7Yxj0p8xr7tZmhnGb68tm2.8XRLA96tlc00sNN3tUpr0NzsWen7VO3Ftk9fGhoPoH4HrMikJe+sx.RE6cztr64eiHO9P2K81nzoi3YGXKkCgpj0Lm175xTdcE6yHm8FBSuXRxmzdjbax7XpKno.Ck5Sxwh+w4I43o58sTz5rmrkA9X+.PyHahVxnkCV.SGX.1Wy5rXRSnVaxE+AzO6B4vWWvtPNmB8ytqQY2KAZhhjl7BEhvrWmbck+F4SgUdHDEi8vVcS8yExSZYgF9mYHqYhfADniaB6p7LcMrT26lHybb7dzv8B3cS1Hzhd6lO.wjg1llxV8MHljNXu7YBtXpNpEAOiU9p+E1Cxx4+bksX7H2PjfE1en2+cWFYSii179Z3GwUzcvz3G.rWJy4tAMx2SWS2AUtOmmPzjyNcBF9PnLj8YD12cbNDmt25K2h9thI3xKIRVvEeYw3zWeW6izbE7LyJWLNOfWjVEIAuWACQkuF.mhIZ58Pz.lXdePfmSzPewB9W.BKiZuqRh1UHT7KZ59dqjYnjmgGmvxxVbRoVwXjRsgIgfv7v7tOjVD5ItohprMYfGmx.DDR5vFfptlOpxsFAIA2NuHPtsoQHCui4SgE7F7RAf4KeLtkAF4Kier3HNI2fVZhv2BFKhy2GGniOwlCLVh5goI4sGiKT9BK3+F1XP0fDiTbwK5cIxtASW61lJLPAA4NH611C0bTHrYFQOBeUOiIYOtLoGSKQNVoBSRy0xB9y0x8Q3BaiLYbAKDLkjqDdlCGjNKAHYIL44NjqQsp03pVmqpHuj.u.Yln6ifyc6ao2U1x00b5xt20wky5PJh0DaTSThiLRum8H8HHx9ezY8alw4NOYNigwmYzh8CvwTWG38f6jE3ZumFmIIi2f9qVsph04kpyGv3a69FmFH+dRS97XSRZXXIO02BS19QCrzPYZhOQEjnEE7sLzDJ8mCoM7m.z.KvgWEO77X2YLqnVFfvhVA+tdKDVa.lXwvMLWA4OkcP9Hg1kWEHsgHOOeM1Z0DqKxIv1v+lAjtYHqPlgj7IHBnIrBrXq25n4qrb1arCMygJZcF8FbLijJqhlrZBshLA49rOJR1miI01bDxLpBEF7l3j8XGFv6CTz5025EV5c5nBGHbfUnl5n0j0vouyVGGi3MlNa0hOOCKCZg7INPTiqRcMPK4cqygHU8192HQ0MfpmvDjBREOrH4U8tW7uKLP7uEAa6aKYWCS5GU41zSrfKo5TY7x+G12cdUvo3ST2mC4wTHEdL0fcx8Xdg2iIcmg4yxtL4yTtLATbuAI6PNaMF5pa3uRdBpqSBFQ2nh8LLB17xQJnwo0LYBWRHeRgiJMYhzQNcOUgutLXWrfYbydik6O2kTmPcD+3iCcBcRDJR8Z3jDHtzmmn2Gzg9HmRry37srUXVOgkvnUs6gWLzYhv9fS4q3yuifEhxVkORaU1nsUGyfPySyDYTlfGLrBwa9zXNxT3IT3dOtAISD0SBjfuav+wG2nYRDwmGEy7dTLBYinX3iF3GalHJlUn.+3lPH+lY38rU4Te4SD.eWPf4Il6XbF3XrHfedyynXV1yHe1yy3fjcbv2krGrfjJHA3f1xgxkogxIDCnbtVAWN.3M9Aw+6kF03hk687gkiKC.lSbRXsFIXNgIwnjsAywEIXNw4XvbR4wrjCliYJ9vJkzUZWKvZ+yAahmerb7ywX4DlCvxwNyvxUM2uXtewP7KVKC6WLCtScCP0u6AxQBXSHGIWlFImX52Ttf35DJG3wOHMX43y.X4pMSvxIdwGKGejX4pMGikqVdLK4wrDRLKUyFoeVXNCLmvbLXNwbvb9bLVO2wXtiwPbLVOK6XLyetKExJv4pmCmKSCmSZRAmSrbJdpb8ClSHC.lqwLALmzEevbBQBlqwbLXtF4wrjeXhBKnkFYifVDmyPyINGilSJGMmspj77Gyl6ZL203fSxIGZA1rruwLOfNwL.ftkIumDXyQzkoQzUM8G0RoneTKSBhNw2sH5nlqbyDHcbWzgz47pl6ZaMl3gnx64Qbc1QuvkG8RdzKgF8BW1H5Eo4LjcRywH63xQ1422X9iVbtuwv8Mxmk8Ml4Q1IMEP1kCuZ59ISY.HW0ROjqpSVHWRYAHWByDHWUu3uKZRiOHEprdNFtkPdHE4m8mvhnHi75Jo5bFZqpywnspl+5Jwuqw72WI4tFC00nXV10XlGrU0Ly1nIluMZY5sQqd5wzUaxhoqZV.SmzLASWsK9X5pFMlNo4YLc4uzRxSSb3QtHkMhbo1bFntZywf5pkuEZ98Ml+hKI22X39Fqlk8Ml4Q0UKyfpqZNptLMpN9jfp6J.y9cqz04CzpY4H+vXxN1WiIkG7Yfp5HCz2kFVAnezQHeJQ+MvXFGtu8WPiHYf0veiMqHS95jVtbliMnu7XiAWndjNmCajMUFBQyFEwrAe1j7qGSxWHyQ9NmK9XP+sZwUNiR+7wj94lYzebQZPSmZjT+k.3umPsTrNKqpBhw5Ae.vPVqsd2JntohltELKxK33Vm0n8W16A4l.nJPbX13UFQXXSKHASs.gmPwFY66syPeQtyAlNU.l9A.9MDn8kfHeM9p0xxfTCnJ+y86zf9xirmt480N09yNuGo67fhv3+KUr88d6lt23+5aW+u6m9l+mMG7KcdA+eEwK5Ath9wsMrI0yf4wCy7ZvNmClmb8W97uJILuPFf4KRgd+nG7Dt80MGh6CeID6KVl78fVzG43Ir7SCdhqjHc3yJlFToyigcRlzgVXR3XwLEGymX6gRK8EW6m+ve6m+KRjdVJSMKfOw5Ye17Sk4AUyTVEBI1pH4yCpks33YvL+5YmkA2datYfJtQlhgmpZX22hFYFiZDGOc0wtO5sYJVdVnkyLAsbUvA1YFYVnoExdr8rPamYBX6JfmRRgzrPWKk0X5YglNyDD1pD5IoQn9cW5f0t8+wuY7wctTf2ahiXaOi+NcZSvk.luTwp0wbwkZ+PvsY2PndC7u5RUaHVutjv30ViXquG5M3AcWSS5NtNRVhO9FbbQYvEuugjSbVPXZvBi6amxDmCDiucEpvZ7Uk3kpWqdC1p7RrboRoHLkYIoouck3TlEpN8YAooLKTa5yBUmxrP8oOKTaJwBKBtafjvRyrzOYSeIgkjZeVOl3p.NI7wDy6GWrwjJebaSiAOoT20xRt0IigW7HgDt8BbMpUsFW05bUE4kD3EBi+2IVCrq.hryMey+xVmCNFeNJaIe16JFtYRy3VD4QCLVlsDnYeSqfQwEks50II71gYEqI1nlnDWX7xSSlxyIagmCkWIvSgpPYS36J02mNlAdY.meFNFtaFOyVD7o5psmQbZR2LVx1SdOc8S5JabBda2d9tNaWLhCsfZV95xBE1AdpRK3yNqGgr2AZdhkdOFlmp22RQqydxVFJuBaL2uaS89FsfaerLRLoZh2s1Ev6VK8ZVmcusITqM4h+.5mcgb3qKXWHmSgyjwnqbKC8WXe5MwhvUH2AIlzP5SLKuG95JbLm5WU1UosxKZ0xYiyCuM7onMBonMhonMRonMUSQapkh1TersYOzk161NdpH5F6eehAbgBtm1hBKx7+C3kdrCD
        

        Other than MPE, it doesn't seem to lose any functionality that Hise normally offers and filters and lfos move plus or minus from the correct point.

        lalalandsynthL 1 Reply Last reply Reply Quote 1
        • lalalandsynthL
          lalalandsynth @crd
          last edited by

          @crd nice, will have a look.

          https://lalalandaudio.com/

          https://lalalandsynth.com/

          https://www.facebook.com/lalalandsynth

          https://www.facebook.com/lalalandsynth

          C 1 Reply Last reply Reply Quote 0
          • C
            crd @lalalandsynth
            last edited by

            okay, actually the above was correct env with unipolar Lfo's. Here is one with bi-polar Lfo's:

            HiseSnippet 13224.3oc68sEiiikddRU0GUkTee5cm0HHdWkAAI8ryz0nCuyc239R0cOSC2cO01ZlNCv5EcXKQUEmRhTqHqp6xSFi.j.jmR7CFvIOjDjWBBxKA4g7PdXQ1IKBLVjX3rIFAH9I6bAANvvva.hgCLbvjygGRQRIJwK5PJRUrdXlVhTmy+++4x+2467eN+GLwnmpoowjZ0a9QmMVsV8KA5dlt0Q6ejhldsGc+Z0uFvr2DswV5F8Uewov90t2YiULMU6Wqd8see7aUu4Ep4728TFpn2S0+W8bCsdpOVajlk22dvc9E0FN7gJ8U+HsQ9dat67ndF56aLz3DjDsMnSswJ8NV4P0mpfess.0p23A80rLlz0RwR0rV8KbOi9m08HiWoSd+mqYp8xgp3O.q0EUPju9gFC6ikX72Va+izF1+.WM2rFpPOvyNrMwN7U.OQqu1zu2u8.+f1d+B+1i5aET71Nf3A8Kdc7IdgHRa6Sjt.QjtNnqcKg2SvxyEAOR2Rcx.EjY2unPd2Z0+Bv9FnWP2ZuQJGq9vInOL8GbSgNcd21n+ya+sGbhdOKMC81F5O0vR8C0u4a25yZ0r0m2p8rOZvfPeFtZlXLbn5jPeLtkdxx9g2T+jQuTcx619TkgmnN8EQpePaJXw1T+M48HZsuWzP+Q5ZVe3XU8E0QnlioB8u93GceEKETCQcmuC8diUmXogEg52W8TTuZRyRSv8UMO1xXLpecLayZBND0c5IF8CqEaqq+lSaxLUs9.UsCOx5lr3FoK25xsP5koExFMosSY7XkyTm.a+Wos8.28NT05ACFn1y5luUfW3s7+ycdxuntwKMQ+xu2229Y9+1uWmuO5AtxgRe6u8lukp9o2cjwI5Vu061Fx24ah593HWA9wvP+wO9geHLvuF57qC7aYVzukIvukIreK6h9srA9srg8a4B82t+9vYUXXm4+w7K5GOmBG1uVHze8yUGZzSy5rYU6vJAwPKgmon22XzrpNzsqzkaMvXR6apg9oc91s0Z+cZKg9euy671Wt0mc4VsQ+EnNz9939i27sFg7DfJs25.Ec6NUK9E0zQu2sf6Qpvlg+RJuFKZK8cLsTG2U6WFWqc1qCD+he9b84jB0DbWKKjKj25cIscLgX5jBHstke3uBQV6zYYEii0AOe2asjJqe+gpGXXpgmDD89nw26E1HI4P0p6q1S4LhRACUojiVojigRIOiR8XMcUkI1p068dKnBiohACeBltmXZofEZRm8vzMzubFkaYuSftWy9VgOO0yTGppXpRjA1vkAXzFXu2YIVXuWJRSru5Lt13vmK8CPnglNhfODYhIFFXlvUtYesvmQF+NtSK4zINL4fMFxA6BZnsmZqWaM8.yMglZqYO7OvAzw9JCG9RzDD2zP2+q47TRI8deyK2RSeHpcwOpkodBcguzyXzX7Wa4hfwdVzlZCto8Ga+KflkEW83urY.WyX4AMO0DsWdhk5Mm4QuRyp2QPOsOA+1wFlOvUJcEJ6R.IxlFCU2a7DMcKh38Mc7JzDMwZS0glpscD0k7toSQfIWQzUOzmh7DEDLGkWZRDl29s+1MwEFRt+baYxsy1g3FYmlD+.Wd6va9ms8DKhey2i3lb9V+P5rrnN.Hm3JCQ8C6q9ZzPA++v8r+xObf2uzwpRrUHOy3mOsOy68dHYD+O5glbpcmuE9eNe2qljWd05hQiNYKsWlc6E5+51SqYb5qsZ81nW+M6RyUIv++WNQU43uMoMZ3.C3zFI3JzHAkbPoFw6wDzp6ytNsZ+NIqVgwnVQ3Hu4rFF+RfqIYpQgYpQgYULJxwynvQWihb7LJ7Kwn3zkwqqxTKC6TKC6JXYX5DOKi.UsL3ZMNVFwkZYByvfV6zT6B2pXWfwytHQW6BLd1E4XNLxmUwyrvuJlEl3YVfcnqcgId1EHb4CkBuOyoNqXdpERXUrPrwzBQ2IfwUarrPrIdH0Da5.lZbDWEiCWLMNzchXb0FKiCehFW4YhTroKn4TajDwFsLQhepFtfdk8wKV2qHkitHEhpHMIqR1qPgchtTEipTmPV2quREFcoJEUodDZ0l9JRlnKR4nJxCCp6rQVjvEaQ+bGtjt77DceNmC75WwQpPupkMa1WwgM6tC05qNolVe71OLcgS0rEZ+68SsXT.WB3QK7JTBLqbIvtJkvEASIJNshfGYwoqDtFHHgwoqTtBvOowoqL1EPXcMc+5c.1raltebSfCAho8m6v8W594M.Xp0RaG.ORwBoDRy9QgG.6Pr.pQIVCgeMZtk5356L2+QPxF8KSi7u2u+rej4ICFn8Z7zJOtFlLSTA.NPQGq7wPHBLMfsT7qutjBF+Rw6VeMIEr9khe7ZPJ7OkVvtE8ySSguoEC1sHGkh4lZMXWibTRlY54fcNntbzL5o3C1y3mf9GtaVmSkcm+q+x+stsSc+Yek+4uu8GUP+rlMt1eYWIKTY9KlbGhf0.XGlHwyB459HXmkexRqljKx9kEPL7FErCyhLSwSC8bREr4OK0wFQ4yKX+f+zE0OHMVw.dFC1rtn5I1QhwtfwJKLPL9+sE38dOu3s3.igmM9HCcsdjW3geRnQcg2q0l7dsQun8944UTjJcwQtg+ma+SmaGzPuwa8tcdWGtweu26UGop2FMb4jgJNKon8sZ26Dq1FCFfVJD9+4+0vedvLugd3a0AplhXGNBRa+a8X0AVeq2p86DFu4y7pOCGaK32c1EqSBZ.6eheaQvU0E3ICwwhlib09Wncm12tMDofjO+sbXMHlk0D+k02wordmYJqkueS31mErSSdFTb4TsnyfK5rdLvJCviZoEH45wZRWRUlEvimeppqAdBYfbv3N78I7a3LBOvLV3H5SGIBm4qFuM0BFw3JhWGb.dW2BWF2JDYD0RkExnSHbdY.Y5TOA7BfG9IYS7Z5u52kT8+4.u+PiWpLzyPg5ShjDUhmmedmG2d5yaO8EfKIHa+o2NlAY63XGjs02dYAUKLkAU6EJbAUab6Gei4ZZLywQa02wmX1fHl+4clPB2R9bkIZJ5VSkMaQtg8xmiVJum1XigJS7Gfv+2.d9DFOQcrxD0Ox3fgJmcSSkQiGp9Lj97tsI+ayCTmbOzJgNdd2IiIBs8Su4KQS1oNYgNxntOtn7jAhcaCb48f7BP3mpZ8JiIGiavp67uQ8pvsE.baQs6NbnwqvtVzblKDYxs+NO7g3uh7FpnNe55pCc.4h7srk8jiOk3n3gJ8PR+YGfvHgmksm67D60aZeVRk509ike7u1cbNwaEp1FY6nCGJ8aietoupAWNWBf7RI8hWhaFqEndeSe0qu2Y0qxqCd0DkwFl8PSWg6PCCVu2vW8pa7BjCWsTVo0CnmdUXs4ruST2y2iSVsgaQGp9ZWjH2WybLZvz8rGQXN22f97ivQ4C14zsPyidfxDkQpVpNmKA2Ogppmno+bBhG.nydcp8DkWO8ybnO2c55f..D5YmoEdBVke9LHktSMeEbCuBtAtfY7UxM.vNAJ5uB5Mri0OzePN4NPn.ZDywpuhXBIu.CirbGNdAFFVNIQIdmyovCmn9CNQUu2Ydxye2e7e7O4O9l+l2t1hTTX.EEINBKPSujcw29Y3wZypu+rEW9yZHgKzP99noNpE387WnWHpBEWH6.N3H7x1C7hItTZXCDbVQwCnav9PAdR85NeB4SXKhU6QlOG+zdJCcKQzTO9FmrCXrpxwyLj7hjgH3mjrAGWfdCNBpxdXN+HkInUhQayPSfo1gLHb6AMDWALButU2m428aDVhsBLPudx6JQ9pY5JQ0dA2yv33QJ1t3V4iCShvwvTgioBGSENlJbLkFbL27W5W8O8l+RaemrAGy7vMpvvTggoBCSQFCCaEFlJLLUXXpvvr.LLj2qXfeA+tBLjBSRlqifrfPsJnLUPY1XfxDCaw4LvLslt+Wn4v87n63+Z+8S1dI8wlpejhsWau8j7Q5mhjG7u2667pnmZiNvew0cjgg0QA2qRs6be0AJmLzZ1U9kjMNFF6MEbYFkF1QhXNaU9KcmBfUwY+raMMHHssGe0oezaaRyFyy8U6o8R0g1dOyZccGhttqSXV5rcvjOPS8jTh1es83XxTPYfBk530X6M6303YFmXooe3STrlfiJG.ZjWWjqgdtn+McA9674NtNM5pp229CeI5OmGBwettyCgtOzuJdEhJdQPWD1Y6v8yVAeS6O29upxopseeUDp546c4O5O93c9OR+n+3C6Ygp9OZhhtIB3efBtq5HsOxPGao89RT2YLtNBrt.yhoLIzG8yt8CQJYn+ltJVmLwtqm6ps70UqJpTJJA.lM.kYtn.uFpqKF73Czwm5Vz2fkw2.33Yx8aC1W9IF5FtK212bgpnwfGdXPz.gpPNwbtuuwMRnm9U+MtC4BzIn2hDYKfw2Vrr1qeNmPjuMd.X6xaf6sY6HHvDBN1nq.v7B4Fj21BvU.9CP3PunE+FfvXAacQ700vB7K5N8p6r1b7cgqlvHFKNrfsSLXAaNIH3xwvZtuUDYKNKeIZtyriZ8mRizEcjGbE1BfVzGo9CHdeEeh2z2HnvLsZZ.T5aNwqp1ZdwLrUR5IPMIBTCxZBUNxtz7KMWCeZ6rmabOxSSxpT8YB.KcEjWECnwmb6trT6VwZcsucbltzbjV56KbVSotpcWY66hTuOh5cgkvG0mXpPfclVIOpu2pfiZEy0BsD2En95wS36PyxrocYB6j1BcoVlZIk+js7yexCPq0qOp4b5B.BR33tgyM3rxYSfMOfImcPnrnfHTPBJvwvyxv5bdXb7wd2SrLFoXMEIU5Xr6MwOuiqnvIxIKxwCsqoK6TSOVEMZXwL4kaZt64FaIJdtIKNmopLuMv67oUDzZuy0FMUbYxehhBbRL7RLA57s+ISNM.mc7zmaZah.CiPTedJblKMfihVDxLQOHstHnDkly0Z3mTSeJA.L5jggpC3uubnCMr4WmNzq6SKtPHs+0qO6Whogvws0UAZ5iOw5EVFGd3P0Y7xtKQoPdPzwDH4nSwv+X1P1e.DO8PifmAwykHcBHOY81MXIryGnS.FyvrcBrUB6GjZcvOhsslAwVCv991dvqfE8Atmewohp6KicV8xSNz8sCNIIUGnDvrfFGCK4CvIafFS4XDNSwaD9rhcHgk.ZYu64+k7LYuIXrgYaiIs0UOrs6xfZEoI2+B+RpY11yJe3f+SlwMP+zsWUTB6.dD1DsLnNwp++TeATpfXV9HIJsItMHQhf6pwgoeA6bfCImUO6dbvV3jbQaCqiTmP9Fy1C0Pei0QZlsuErskQaXKecnV1R4q6SVuBNTbfBj3rYFw8qELXbbeqHl6vOER96fmViJ90urOI9RNFlWL2tj6DTM9dLMmyaqnFLxD4fwNQOXbIUxN1UhXhFx2.bKX1NgZ.OaKYFikDOM3oLvk9b656R.xXauWGKqv6fu6a4hdr6mJn4HTFLw.9QTwspG4d4M3iVtgshHkBAW5qJgbz4VJRJ10ORpVfWR1rcQZ3lOGvP4SfCgGcL7ImmmVS31qFXTljsbyEM44BALsZisBsbVfLPJntHukpwNBD4CTJL3Iimg8JA1NxLxhBRcj34DkEcpl2WYzHkkEHf95BrKYgxvXuRYuQ5q83XK3NbX6qMddXnqNrzl7T3ZgktqrM2ctDuXhLEfR2JHyEKFVSi4c+WqVXt+6F7J6hDJH9FjENPg4w8DX.k855i0B68C3NpHjM0NijJaNijRlynXOXNSbFwrY3Lx4MW2dil0hGGRcxKnI.rKlxN+MKoGQBIvI5RJQL3jIz4vFC5bl183ZAHvgo0hllYoT03m3iK6i3CXgh4CNZzMNRlOj13Y9HhYybr0IDSJUNrqgw5wJBKkKlvRoqhjAbd.OWhKMgGXqb.XpbYCXpbJAltMsAldk.vjpHIImHIgYifjDo0hCIZSRBeR8FsUA0aDy4XuQhI1azVz1azEcmbG1oj3NxuDWPHJIF9ip3IglNjlwfWjnIwdQOrU7jjQ7jPKpQ3RejtDjnD1VKchknoFgoPQMhXtPMh74.pQXhjZjMisqSXSAIJ64XjnBEIjnvRGRTXwbK6XqnFImnFgcifZD4MBGRhaJNj3NG6PRpH4Phoz4PhoL4PphajrKFRXKdjiHUQNRAmbDdZQNBWbIGo4BHGgsPQNhblSNh88tQwxaSVvMBajbiHWxOC91HQk1HNitxEsynKWY4T36r3PtR9wv2cZoxz4vuSdcN7kK4iwIwq+r6kZQcPdg+f3yUnvaaSqCc1Y+pScelA2VH8goMeqDrR9ngayUTfaS53ByX71QbmzkrSBewFwMejr+BK6W6U6Xes3zYyveLrn4OlujA5lei.zMrBz8LftIixgaFixYJGixK7nt4yTT2UPey1LIzLvgESObXA5BGluXAGlMWneVXym94X.Flci.LLylgaR1hlaRgRFXXgMBvvBU2DrgBFlcyXTNW4XTdgGLrPAjBZtJJnKzTPKkdL2hzEysPwByMetf4VbyGysPzXt42HvbysY3Mlun4MVrjg4Vr7h4dGOL2ynEWELdhwmp1yZOxCoXpDKmWPAdnJ+lwPUgxwP0BOvYwBHvYgJfyEKfy6DD3LSR.Necf4IiZOxMueZ1Jx4Oi68t2EmM9YEVHVpoRy2AXLXfopUqV8Nwpsgd6WcjpdacCWAD0oj7jACHOx22GwUi95LtasSyHQp7WAm8GaqXmTMakn65vbOYdgk6XnOCGX.cUHJ27P0Snm80iQj5SCr9vTv0CoXpGrEW8vMBAighzqGL1cr1J+W6EVOXhod.Wv4iL6FtmfigKjKZs3h.bNapml0YsxcUIYMIwvQza.lnn22XTaTwf7+XoVj0ILr5LXswAPmj5qTxhvQGJpaQR9hRt1fjkiyXpouvxOI0azWSBYCU0xI9vIl7rY9By3XLE0LN1tycYNHDGegiUnNVd5mvolNPMla+aBt4Ni+1+dMBUAseGx9+1tXDMjNYaiBPzB2DLRSejxq4KI2UBtx6LqE4ZScGQdbV6MZGO5dNzlNg.VObJrFMc1BLd6hz1NyZ+RXR.+F.983XXXD6HJxIwAQS0OS21FYv8qPiDoD3OuHoVVTlWpCCTzIykiJXsQmLp1rkdNU6Ju1es6h1OTeug1zDXu05DhuXFI4N3DnNGuDDxIv3joywulasFl3kXN0PEIxB3WQfqdFYuE3.LBOzpVh45g7lTIICRytKd7cAudfRej9SaHiMx1KwjEWNyMhY99rwsblsuObMz2e9ZMk816rF5sOs20B5r67zTuDykA14pfmdxHecImhhgYNfNM.OwGtncAOFA+EsrsZceklUui7EbE9+B7.q8Mz0U6gGXYF7inVoYgQrfXcNxQUqRcxkx5LaP4EV.2O+tLKS6cYdq7kwKOaeQBFFrBFVELry4vvxr7S1k8SnR73Sgl74XG5GVZgwBoCKR1OdUqxsBTkGN+VE6rH8CWA9p1ZgzN1H6mdhz8zdhw3MEyrcP2EfqyjIH3WfsCrCK5Ejkk3jE6.qQ3Gr6HCCqizzOz65k7K+xu7B0p8W7N0xeKyk.OS0T0JYa9Cw0SUujpdIwkI8Ueh4.cN9K32+Dg76wFlOP+z6ZGWAQBENvCiG3a.d53UE38ToUW8vDKs6.tkjPrkW6K8IHkD3qBd7C+P3AFlISh81IoDHyLTUlep5gYWeBmz.NEkWl7wFyQUYNw13TIy7zTlYSrcNw8KDnp7lXa7N3G1gKIRrH0lda+8gYuAVhlha1OOgL05OfD2r075dCEQSANSMvtW1JzQfuA34NAsTNXkYntPmCVZZ4y65fmYGQU4fclixhbNXkokGuKhCehOzNFpiuG5+rekO8G9C+O76d63NCmcrbSG4sIvzlcbXbk1uJ3VnERIIi+ShWPlSRhmc4l5EbhPlaJDxQHHorWsPUhgxPjVfZvjwpAaRUie1simZrrLTI00BNJNzMdIRBpqB7wWEfoTE3xXUPH6aE3yXUPL6UAgLVEjxdUPLiTgsA2MPtXAUH92Yjl1Dy0wSCtA.JHJuG1WAqL4ukqOM7cT2Npu4jYO0f20xRo2wKQQ7DgDRNHTVTPDJHAE3X3YYXCS4uerp349hUPiwQPXOkyVWJb231UEWfhLbc78GLl8bCUuaB5dhIdyWRPe12zdY3t5MmHmrHGOLL05YIocbW.iLyJ1L1D7L0gpJlpqqFxOXIU7N.ne8MFtuVtx1.7AFC6udzT.3.E8nSWTdPlF+F+M+h+c6e63tVARTTGA16FXLx7yr4.7A2jVxt6L78SVWbxt8lpU4fkbJr.XGAexpH36.tEK6dLIRzS8xfSw9ebOCiiGoL4X79m7wOxMhiQBmkptkuBrd86qdpVO0O5rw18puup4wVFisqzdpll3tsWf7vqf2e8y51ah1XqG9I0Hb0f2AumXz+wJmoNI3wOi7h0p+M.sGbhtsEosg99j3e4lucqOqUyVedq1Hs7A80PCO5ZoXgEnsumQ+yvGYXcxFp8bMSsWNz4tGqqwPCmfPe+izF1epTZZuQg1ZGd6GUsdkgsxWuty+d55wwR7KHBmNdWJu6vgFuBqYiOxPWqGodr+Rb3ZqQBnFrBQ9n59GofZgG5rZ95.jw1aew2Yga+N4DbDtHPwqahoaTeKemq6VSOkIoOCXgWxNZVRupJrS0cbuYjbmyclfiRUGe7+FqtG4ooL7WAKc7xBhHPRyXRC1usWL6FokcwETh1mGDJVht2C2YP3Hl3i4vV9OlCOXzKU6iZns+031yfak6twa60om6YRPI5fYeI60OXkA4QBhHRM8XUzHgEG8u4ll6hcOcA4.ckEGLYYdafGt8hfV6A6llJtyBYEEwQ6GuDSfNe6exjSCD2F7qdv4gCVFqYCFjHhEXm4QSXxad6hUZOlDHHIL0MWvzgF1GGuDm5h2l1ot3kR9dw8lSaGRLsm7bo91EobotCFj04gUsHdWE6D3Tk6A3j6+AlxwH7B+EtFLVW3ZSMTuINXDaaLost5gscWBTht6lRWBqlu5NXqPe4ECS+h0uZfqx3vnOHLJCtrOw3R9t6hyyqt3sipWKCMRpcQdyEmQ0xtAuEDi59Qt9Vw89mvavjWj.3e4Edu4CPZmpooMa.3UWWrudk6DYF0lYsb6JGVqwJlUsK6I0jl.SsCYla5hqPzC2mkpqPlsV3rsATqFK+RIJMiVBAlr2OYdDTquL5xtycoYwjhIWVUyU1M4RzW.WLQcAbs52dQ0RZiwRCyp4WvZdLe+BArsSNO5w27J9OuNgNLdUMBgbAh48vHp6euaOecW6Nwpt+G+q04+wsC4VEyWcO+QeGVx4IvEZyhbKmkd.1Iq55Dq9vy5Qurm.iZ45QGdtzkty0Pu3h8omJM+BqjGkot6fkP26tazGn9Wh9K3N8Q9tf97CyMOrj5lmoxM+Z0M+Opn3le1NKEojy.4VYuLRKHHtqMOLpAqu07NBRy59WmrExl9TcFSqH6fEEcg9S0YvBEegb4RlNKpbXLRNWY1BkpXKLB1BgQxVH2lBagbaJqsf8bLcgvBDcgbmynKjq.tNhkcbFqXKrhsvPXKjozmBzIPapXKjeSwiNy4XO5hEHO5rmy7nyVN8nWQLXEwfNYjm.8UxadA2JJlTXyXlTZ5NP97NAj2game+ezpT1LKkbSbO9rmORtzG8hAYmjsULSVrKhORljwG4pEbyQxGoXtvGIWNvGobEejQvGISj7QJtVNcSY.ejBk7S.wzUuvcNd0KBqsC.xtINmetos5E9BebMvlFBIocSR0xWJ3DRxtQD9hxUDRNTbSwkN+4XW5REHW5BmyboKTRcoyT4RuhQx4CUQ1TPIY1kyRsW9rz4cpB+q8O76+6e6Lhpv67cexe3syCpB4oEUgb9nJbq3dWj4mpP17jpvHIbWNWnJrfkYyyBd3XijGN4R9sLjSFNYS3VHQtncKjvUVtmgbVANWoeE3jokJS2zPcxqaZH4R9XbmCUWmxwf7B+UMDWgBSNg6rNU2qPE56UHgzeRg3W30RUpfayUTfaS53ByE71vMc71tq67Z2IBR1K6Wsmt48tMBOxvhlGY9RFra9MBX2vJX2y.61MYQtQLJmobLJuvi6lOSwcWA9ME6rEASQQ3VOKafsKldX6BzE1NewB1Nat.aWXymlb9niKF1MBH6LaFNyYKZNyEJYP1E1HfrKTcm7GJjc1MiQ4bkiQ4EdH6BEPpx4pnJuPSUtT5wbKRWL2BEKL274BlawMeL2BQi4lei.yM2lg2X9hl2XwRFlawxKl6c7vbOiVbUv3IFepZOq8HOL5D5ZQcAE3gp7aFCUEJGCUK7.mEKf.mEp.NWr.NuSPfyLIA370AlmLp8HRatwDyVQN+YbuhZaMab9JrPrTSklcAFCFXh5ykfDvVtGsu1ousHUkqfyn1sUryT4sZUfUHx8NcLzmgCLftJTRtzhWKWKB12YNQpTMvJESYPYjhoxvR8dZzUYbCSwXnM85AKxiab2yy3oIP5nIfTf6bgGxtkpXbQqXWDfyWl8zrNq32NECmOuAXhhdeiQsQESacCK0hsVgASyu1txC2w6zRcHFPQ.Hg3DNN56V.hvcQfg6LqcHgor8a.32iiggQrinHmDGjsib1gNml7adYv.sWCEdwKQCblIqd+07ATy+Kk1KZNWfX0C3Kwt0JrdMGN+Q8KkW2oaG9QnMqZ2cSw8HweIv1ar3Qg6Bv0YxDD7Kv1A1gE8BxxRbxhcf0H3v6Nxvv5HM8C8l.9K+xe0e6eyK88tSs72xbIvyTQHpijIhUtSdft.ec+y+QtfEGaX9.8SuqM9wHWeXfGVu99F55p8vy+XKPdeDU5d4OELKIgtzz3uZzoRqt5gIVZ2AbKIgXKuNIub5HvWE73G9gvCLLSlD6AMHAxLCUk4mpdX10mvIUvQQ4kIerwbTUlSrMNUxLOMkY17wNKPUYNeryhTaRt82O4SYrC9gH3zIPfkno.m8yWHSs9DHwM4F3jHutmBFZJvYpA1Mf9oi.eCvycV.ZNXkYntPmCVZZ4665fmYu13bvNyQYQNGrxzxy2krWcVRcg7O5O5e5uweve++m2NtSwYSEOcD3l.yWoY06HXbk1uJ3Vn0MIIi+ShWPlSRhmc415ErgdyMGBYGfR5tGsPUhghcW.wJYkRcUfMKTgkkUEntFvk8MBrYrJvm8p.WFqBBYuJvmwpfX1qBBYrJHk8pfXFoBaCtquBog8JH7etur4eqimFbC.TPTdOrOBVYxeKWeZ3KBENpu4jYC1i6ZYoz63knHdhPB4.DJKJHBEjfBbL7rLrgo72OVU7bewJnw3H+umxYqKEtab6phKPQFtN99CFydtgp2MAcOwDSgdB5y9l3m2wUu4D4jE43ggoVOKIsi6BXjYVwlwlfmoNTUwTcc0P9AKoh2A.8quDy5JnrM.efwv94jllT9ssOt62yv33QJSNFyP9G+H2sYBogVp5V9Jx50uu5oZ8T+nyFaK12W07XKiw1UaOUSSrbcAxCuB3.igm0s2DswVO7SpQX43nwCdhQ+Gqbl5DXfahVx6Uq92.zdvI51V01F56SBIra91s9rVMa84sZiLcOnuFR86ZoXgkmsumQ+yvQxiNYeQdtlo1KG5bjf5ZLzvQA2+Hsg8mJjl162isxg26QUqWYXq60q67uc5lbMr.+Bhroi2po6Nbnwqv503iLz05QpF6uDuCcZjMRDqOjOpt+QJnNICcV2ScP8sr2PUmssJj6wWxdjQhjoPkfniAznBMtYhhocHWtvSiepTeoYhW9Epmu6dmY2.DqPrZtio.vYyssGIEPdtFNziTGh5OtG4oIYW8pCV5fiqBd5Ii7IstiUsayp00FohuCyf+uXdRN2dwqPMsTDsfRz9D4QwRboWmPQVjK0pj3swdK+ai8CF8R09ntV1+54uhm2Md6HJ8lpkDLjN3uh28xaJcXS1ccRM8XUT++ZKj6hbSycwgkt8kltxhi+0LuMvCCVQPq8fPQSE2YQIhhBbRL7RLA57s+ISNMvVsym1JyK7fvw2f0r6eeHgpybwMXRumuhguwbO9Tw6qexNUDEJs.PZLriJKpDtVq5Yg.VVN1R6PN1RI9TKkeM+w6n83f+HgWU.wRKJsWV.foWqtPpj7sy6Azj.vjoHOhtXc5l.ye5lfw5zMM0P8l3XHqswj15pG11cINQeTDRY9sfu5XNUnue.foeQ3WMvsE.LY43VfyN05c7+SzsCPljsJXhruZmZw4DcDchmUrJwyFwsJPmHS3ELaJId1x9c4US2rTGsSRcaUdRRcrq+jTWbS97k+bTGfzqyUcoVJpipIlNlzjqYo8b7UIltBdtlEV5WUtKflprMKKUVAdROkzYP1lEdN1QNWAJayBOe3I2m9VlbkyT4J+beNlMD13XRwcMDsuggHWFImySrr1cAxnDKqSYm8zywl9quSlDc8xDJ+b9u9NgE.B5R1kM6pPPmTEAcQPPGbAKJ.LkfNtXRPWAkVNN5Bmeq0Fbdlyav48syhvbdmEmGDOyFOH9FA.wyPOP795vsZv4W1osJdDykkIXmJz7EPh4X1PHlShlDysU4jXN9MEO4rmi8jKt18jydNySNa4zSNSkm7Jd4HGAr.8UV+zx4be5dNmWtuX2+5+zLiWNye97gWNtzG1bAYoisUJhaN+7xwT.3kSL23kSthWtH3kiIx.mSjJ7xstuMusu141Pv0ycNdC2EJPa3N24LD9bEPD9K8dEpJJ5pHqKDx5X2PHqStJJ5FJto3Tm+brSco0VFUXdm57mybpyWRcpWwaWEucgDOcrEEh6jN2GPc+A+z+yYEwcewuy+m+W4Bwc7zh3NtVQ.lL7qZJ+T2wV.ntSNWRC17a9oAa1H4cStLeIx3cQSHU1tnI7gKUNojMEi1fU7Rmfqjk8q41.VqMYJox0EISm75hjQtTdQx3jwr6TLtIY3Jm2jLbE.r1to1zpqMlh70FiP5OWJ7sRzDrQCila8BilzgElK3nga93n4illbXoGHsaFmpLhj1wSKr3AklujAkleCAJMrBJ8bPocSQak3Q3LkkQ3Edb07Y.t5JvsguOTYDfWwzC3Uf1.d4KB.dYyE.uBmeA7B7.7xlimjZZCxkoL6Bjs34BTnjAxUXCAjqP0EO9B.4xVlILlqXPXrP4DXqPggvXtJBiKzDFKkd7yhzF+rPQ.+LetfeVbyG+rPz3m4Kw3m4JydW4KFdWEKYXlE2PvLOidbUv3IFepZOq8HObkyuj4kJ4a3HeYd4rBEukyJVNA9JVX.9JTA7sPC7kII.euNv7jQsGQZyMlX1Jx4HWdRts0rwfpvBQBMUF1EXLXfIpmV7O9s48zYNYVpHUkqfSgusUryHxsZUfUHxE1aLzmgCLftJD00GpcD88tCPYiVoZfUJl.m6n0tB30KSJlJ.aws0vWjyzINZSudvDth6bOVtw5BSL0E3ZQWRxw9kKZM4h.bd5qml0YkgllX3k4M.STz6aLpMpXZqaXoVX0Ke2Ac48xYa3cTcLOcvLA+2EAObh5O3DU8dmsHzdM.LylUnYbyJzyj1mYXjk6vwKvvvxIIJwmcXpoDLKGV8Fn8ZnvKdIZrwLoE3ulOfV9eojgI2EHU8.N1raLBTaXAYHVm1C8rDVGyXneHof79mIK2zCBG89pzUf.n0q2V7Ntg2.UTrNIabnLSGYFYeU+M.x6IYm9uEfR7rcXDYmWPD3DghRPQ1NB7PIAaAYav2cwojdei82AYqjlkTQIeIBbDt6YljNIK6YFQksCrCVYkkk3jE6.crYcGYXXcjl9z8kaAI97XW2bKLyl+De6UXX2N6q7vt.8x959M5jKauwFlOP+z6ZiMMxUbF3g0quugttZO7Te1Bj2GQktWRs.yxRnK1M9qucpzpqdXhkVTWJIgXKuNYkY5HvWE73G9gvCLLSlD27B+W9s9S59e+ex+9am.Ylgpx7SUOLox7+f+ss+WL4n+MIQlYooLyjB67Q+PqesetK7ajDYlipxbJryeme2O7uyeO8ebRjYdZJyrovN+m8O6+8+om7xuHIxr.Uk4TXm++9q7ondG+qRhLKRsI51e+zLsg68xPBDYIZJxI1JmDOINGyQZ0q.ItI2DmD408zhPSANSMvtA+NcD3a.dtyZeyAqLC0E5bvRSKueWG7L6EkmC1YNJKx4fUlV99tH3nwC1GsFpACh+Dxuye6272425O42N1SHay0Ocj2l.yWoY06HXbk1uJ3VnUDQVcmDufLmDZEdK2TufcGbtoPHarTR2TpEpRLTr2BHVIORpqBrwWEfwVEV10rO00.truQfMiUA9rWE3xXUPH6UA9LVEDydUPHiUAorWEDyHUXavcCP8LpPfA3aD5v23TF.gBhx6g8Qv5PH1x0mF9B7gi5aNY1HG4tVVJ8NdIJhmH3oLXx6fcbnojStCDJ.micOnrnfHTPBJvwvyxvFlxe+XUwy8EqfFiC4+dJmstT3twsqJt.EY3536OXL64Fpd2Dz8DSLy9InOKg2UW8lSjSVjiGFlZ8rjzNtKfQlYEaFaBdl5PUES00UC4GrjJdGbEmHLDKWYa.9.ig8yIMMojbaexvumgwwiTlbLll7O9QtaJCRCsT0s7Uj0qee0S05o9QmM1Vruup4wVFisq1dpllX45BjGdEvAFCOqauIZisd3mTiPxwvwCdhQ+Gqbl5DXffef7d0p+M.sGbhtsUssg99j3K6lucqOqUyVedq1HS2C5qgT+tVJVX4Y66Yz+Lb.BoS1VlmqYp8xgNmEntFCMbTv8ORaX+oBoo81QYqb3c7T05UF15d85N+amtIWCKvufHa53sZ3tCGZ7JrdM9HCcsdjpw9Kw6mkFYiLw5C4ip6ejBpSxPmEoUGTeK6sw0YuiC4Jqkr0cj.jJTIXkCezYCSpcH2itSCKqTeSQhW9Epmu+svNoQtUyfAwt8Ho.xy0vw1j5PT+w8HOMQa5HXoCNtJ3omLxmz5NV0tMqVWajJ9NqC9+hZyM6v1KdEpokgnETh1GFOJVhK8N2IxhboVkDu65IYKf2M7Kx2rapVRLV5f+Jd6NbJcXS1zeRM8XUT++EuWv4ll6hCaIJdtIKN9Wy71.OLXEAs1CBEMU741kd+c91+jImFHJu3Sak4eS7eejnOSTID1UbwrAoXo9BwxI.Xwate7NZEE46GW6XAqPblmfkky7zNjy7To+HO4f+n5VBHzaUVXo7XLRB6Slh7H5B+QkBFqiJ0TC0ahCjr1FSZqqdXa2k3zJRCcJSpC7UmdpB8omBl9Ege0.Wh.vTjlUuju6LfBPpZfIx9pcnTVVUrJKqFwkNPmHy1CLIDSNgJrU00WFjkUYJyvxa3r4ZNYcsyuYjM10eZVsoaFJ67QBYyScoe9XaaplO1XpRxpUIY0HSxpvMjjrpHMSxpaUNSxpraJIYU34XW5bEnLmNbi2mNHPRVEROm54fqblJW4UoV04Ylio.bIFQt4SNumYUwcAxnLqpSYm8T0wl9a3SlDcW1DJWc9ueOgE.x5R18Q6pPVmTEYcQPVGLRx53nxEDZRwCmAj0wso.rm4bLvdXABXOy4Cx57ouEO15V1owphrtJx5BgrNlMDx5jpHqaH+lhOc1ya9z8ECQh4bLDMumb1yYdxYKmdxq3pqhqN.4HhEnux5mpNmKz2Jt5J+b0wk9vpKHycrshIWcWZAb0wT.3pSL23pSthqtH3piIRt5D2T3pSnjiqm.rMw4TjHCzwzCwk+bFDW9L.h6VTc+nYqXqphspHYqhcCgsJ4J1pFJtovVE243cfRhNrU4S0SuSctyYN04JoN0qHtph3pPBxL1hByURm2Yt526aZ9GlgLWUKWNPn7zh4JtVqbdjls.vckbtjFo427SizrQR7jbY9VVw6lXPpTlAaI3RkKdIvVtRVtklaCI2RyWxtoU5jW2zJxk4DFemhwUsBW47pVgqvjUp6TcupTnuWUDR+g0fOgYpyHgQysdgQS5vByEbzvMebz7QSSNrzCj1MiLUFQR63oEV7fRyWxfRyug.kFVAkdNnztovrR7HblxxH7BOtZ9L.WcE31v2GpLBvqX5A7JPa.u7EA.ur4BfWgyu.dAd.dYoRHKtd.4xTlcAxV7bAJTx.4Jrg.xUn5l4dAfbYKyDFyULHLVnbBrUnvPXLWEgwEZBikRO9YQZieVnHfelOWvOKt4ieVHZ7y7kX7ybkYuq7ECuqhkLLyhaHXlmQOtJX7DiOUsm0djGtxIfw7Rk7MbjuLubVgh2xYEKm.eEKL.eEp.9VnA9xjDfuWGXdxn1iHs4FSLaE4bjKOKv1Z1XPUXgHglJC6BLFLvD0SKQfty4IzbR9RQpLWAmkaaqXmzfa0pPqRjax1XnQCGX.cUojbumtVNm51W4GQpTMvJESYPYjhoxvVvUF2vrKFZSudvh8HGhtvDScAtVzkjbLf4hVStH.mX65oYcVYnoIFdcdCvDE89FiZiJl15FVpEV8x2kxVdu71FdGcGySGLSv.dQvCmn9CNQUu2YKB8WC.yroQYF2zn7L4IYFFY4Nb7BLLrbRhR7YGFaJA6xgkuAZuFJ7hWhFaLSdz8q4C3k+WJYXzcAVUOPTya2XDn1vBxPrNsG5YIrNlwP+PRA48OSVxbGDNZ9Uoq.AfqWus3c7CuApnXcxN2PYlNxLx9p9a.j2SxNeYK.k3Y6vHxNufHvIBEkfhrcD3gRB1Bx1fu6hyg69F6uCxVIMKIiR9xb1Hb3yLIcRVFzLhJaGXGrxJKKwIK1A5Xy5Nxvv5HM8o6S2BxT3wtt4VXp.+I916vv75rxC6BzK6q62nSt84FaX9.8SuqMN0HWAZfGVu99F55p8vS8YKPdeDU5dY9ALqKgt323ud2oRqt5gIVZQcojDhs75jFioi.eUvie3GBOvvLYRr2AtNAxLCUk4mpdXNHyrzTlYxG6LGUk47wNySSYlMw1YxGRf7JPU4MerwhTaRt82O4SYrC9gHD7IPfkno.mXabR7g3bfGoUeBj3BSQe33KutmaDZJvYpA1ML3oi.eCvycV0aNXkYntPmCVZZ4265fmYub7bvNyQYQNGrxzxq2EACGOXezpmFLH9dP9D4+k+jS+W+GEaOH1r9SG4sIv7UZV8NBFWo8qBtEZsPj00IwKHyIgVa2xM0KXeBmaJDxVLkzsmZgpDCE6s.hUtUj5p.aVnBK6Fmm5Z.W12Hvlwp.e1qBbYrJHj8p.eFqBhYuJHjwpfT1qBhYjJrM3tAHcFu.h.LMBcXZbJ2ePAQ48v9HXcnBa45SCeg.wQ8MmLaLjbWKKkdGuDEwSD7TFLscvNNDTxI2ABEfywqGTVTPDJHAE3X3YYXCS4uerp349hUPiwA+eOkyVWJb231UEWfhLbc78GLl8bCUuaB5dhIlS+Dzmkv3pqdyIxIKxwCCSsdVRZG2EvHyrhMiMAOScnpho55pg7CVREuCthSDyKKWYa.9.ig8yIMMozaaeFwumgwwiTlbLlf7O9QtaGCRCsT0s7Uj0qee0S05o9QmM1Vruup4wVFiqU6YFmXooe3STrln8Zbe4SF003jI8T2+HEjYZnId+e1Bu+OjO2wc+f5pp229CeI5OmGBwettyCgtOLWpiQJ8lX7BmHbCaB209aPlIcT6IVkeB9ysg0N0eS4Hs9ZunWO2c.L7eCSJ9Mro32vkheCeJ9MBo32HlheizR+MOA8QmckCOTD8EG7.x9CV26R1c6Z++AloBpi
            

            It requires some offsets and logic in midi processor scripts but isn't too hard to figure out. I am sure someone else could do this quicker but this is what I could figure out.

            1 Reply Last reply Reply Quote 0
            • C
              crd
              last edited by

              Okay the other versions uh, had some issues. Here is the best I can do:

              HiseSnippet 6029.3oc6c8EiaibdmRqFs+w12sWr80qEoW2lTD3.bcgH0+QPpj8ZuNKhW68rbbRPCfCWIpcYWIREJp06doEv.MW60GNbMHHnvsoMWQJPQPQ+yCEHWPRqMRZA5AzCIHtsouTjKoInOjjhKOj9Tx4NC+i3PJRJRJRJpUidXwRNjy788My7a9luYlebGIwlb86KJQkZ4acbONpTmFz3XA482XeVdApstLUp2Inmf3s3NRdfDW+6zfWf6trGdUNg6bHCK0kNtGa+9bsnRkZgqhdiTKmghh5Uu+8e8ZWhsCqPSNsao761h7M4tFeWdYi6tS8OHemNax1h6V7cwd5B02ponvFhcDG.ktE.4n5w17.183tNK5wRCnRk8Js3kEkZHyJy0mJUlKI153F6KdWA0m+17842sCG5BZpFvLR81aJ1oERhQ2kZi846zZGcqPeJXltigMYAUax4.ay2he38MrMqpjvZFuAt8HUZyh2BlDOZmDOaDoTXhTFUQ5o.MZJw2S1HEj7bJvVBxbRsYglcbQQ8YoR8PvFhvGPPd8trGvsoD7hguvEJkK2ysF7Ou22W6ABMk4EEVST35hxb2P3Bu2U9jqr7J+Nqrl0jZ211zPEijXmNbR1lLplVxsW7BBC5tKmzys1grcFvM7AgpuYaJva1zlpZM1CJJrk.u7M5wI3TCAJMSE7+9PacYVYVTEg18fOWONIYdjHj5xbGBaUqVsrL3xb8OPVrGrc8H0YvVKhsFzgU1bSHT+FsDf1.S0anJGg97xGazs3spYscUFmsA47byduJtOEXGd4l6au7l1F4EZ0hZ4UqW5Y.WocatlxFBaFvleDW6RF5hxRphxuD3pcD2ksigAD1tAJUbpcS+k0Rdsgou1vGf1ILU3uuoWwT64YL0TK3YKhOvPyDUXnwZa8yNR0Te+26bAuIw1XDWDSLypJluSMTeTs5sYk3YEjGJaJhbVv017FziWJuDeOwNrR3iM78.F3v8j35wJwcKwc5vd7E5y1sWGtaB0mmaM0+u+NbRWpiXyCFEBumpPqj5E1c.rGojiCdD5iqLtQO.gzHxXiMbcN46JJcfxvzZ+OrUEpt.fpKntXmNh2cCwt830vKglbk6siXmi6sun.eSzsTeBNXiOAAtNWrq3.XtmBjJsB.50EaAkprax1DJ8GuCq79Hj3l5XFq2bXaV0B0n9WoUFTC2gUB51Dbn99pZGJG0wA.onTTotcQpjhmUKfRWUmTJZ.JuOMnM+QUtytnpVJSxxSiIKXOiYwvqE4BXE4SAtqDaOw9MgvYnF4zlK2yhUtBh2oKDHIfEpY8zn.oFwlKwsNVx9qzP0xc3NR2ahKy2uGrC1kT5kzej6.udKgVbGgFH6WGBjgUGhbSU+JXQsMuvsQM0Q0+4VOG01rGM75BvqaHy0qA+KnbMM7ZUnhsQp7EGHK1E1cPGsDKayZjsYQYKCV9lEPmyTFeN3SPmS8Gcgp4noKA6Cc.2cUMfpO.CS0p4JTrDCS9BUJWonlSqaJw8IFvIz7X2jFSJIsIkDJLkbPKOsRlu1MQ88nL85Td0.R6nA7pPI04LMy3xTTlrHXm8Y6ikK4BRtjUwIRqhhgSpla6XJEkIWftBN9PZUK1V8uMJ0lrczyQHLDV+iEA83XOvRWwSo10.kh+5TjI75TXVkM7Q8VrR6wIitGlVrLnO+dLcEaYVOdB.r829qqmF9HoiQQRap+YJ+2RP8VVZIDpUhljvz3RnpDzXeVnaFiCMQ6hky7IO2eyUepRYpqLuHANkQg6qMMIsKguCxrsUKKvpCKaTJZPQ9EEixpBjUoyN03r1Ck+eqO8O929y+W8eUyU4O63kebDrnGyLP07WRT7ftrJ9oLwSm0WNixPbF8jkynoldNilN9cFMMwYThynDmQINiFANiFllA+5MqGrEwq+rSr6nKBXVuR0RTylNih.jJVkIG1OZp4.+RiUeQyS7Ek3KJwWThunDeQI9hR7Ek3KJwWThungmunqLbuD.Gt0vgLM2O1XC+st7en9b2hUwoKi85wVBGBkGz6abOiB55JN2gmcM5JJJuu48.Be8Ky0lcPG4ggA2oMpSv8BziFkrHiRbaUdO0S.VEs8IzJfayAcHDotH6w4GdowVNIZLOWlqI+tbcTPWhZccQUccIvMYEZI1Uaq0ndQXpmp4nxsU5GqNvQDnPAd+wsv749i6lhCj4E1aaVYI9iPi6MnaC3.8M0mTWe84yoccNcW.ZvIzR4hGC+okHM55TZIRqmHt59Dpp6o.n8prxlYVQYeZkqW6CydH2ZWkCNwnQa0gua69TO42H72sc2noLr3ukDqPe3b2LkwM35xeKQAjU23lvl4nQMUcR2D5FqjsI8V01Dpj19NMXkGHozjTeRzXMAmzcAXtSt6BvIeC5F7s.H9F+dYcYrAOZZAWAhp2A5dhhL9N.ZidoeWysq2VTPTOhJX3kbv9i6smYOFrUgtnrLayCLty6p9M45vwh2.9yU+ZvFdrRlGQwW1B+uI3ss95Y.ph6ZnNiqcxXiUeRZfCe.f.F018D.T3AUCMKTFTsb6o1A8ZrGyIQe671dzG9U.1EOzoUHPOqhLeGUgS.1mAJ0dKfnoCqcJpchf6yB2jY0RnSSkN0B9dNWJs.0Cz3JXQPXEPWwVphpIM4bXZxvmvEgF.3DNzbC0EBZvMrFA1EAr62puk3ftJp.UPfWWMUuaQUZs6rj8jH2lvr35SbWod21P5z3tH.kgWmJM9MnbeB8KpOg9SA1U0qa5blmOudHULlKuAvjwz4wlJ5vYzi4RB1z3MdxqbTOIXmIE4.ZinbUro7aPxRqEjLU+FuBbtgsfPPCmvf43.sj8A80EM8k950snou58u+Wt1HZZ8qu8qWCUutj1vUTX4yu3e98+4ubcJeW3iZleys2cmZ1alQE9YzJ7qwAazRMRlQE8p+hPOWZxdrkx9gR0igxNK3C.G+wpZWHNL7KCZLnuLVnoiUi9x.c+2Lxn68JGz9u3uOTz85e2W3S4gFcaLP5PNq5+aVKLj.064nDXdAJLxY7fXiC7YynoPmGVW6A7CF+BiKP7oRY8lPHBcv3r.1VsxaON7UDPA9P4T3MpQ6sdv3LZnsxqyUaVgjMARt.VE1hg+vA1D+diWAaYwv2dy1JHi2H3EAoAzy.+HH1zD9MqMpfPU2SBxq9Yx880Djqx1sKqavG8s1fV2iI5IyopEAcZKRuRD4V0oA6obn6tyHqej1ZLikrO53kYh53sxPvf.z4Kr8GJL83QO5YNs5ZdD.NWc+A.uHPUlbEAFynGV.voCC.XZB.rpKN+rW66Wi..G..3hSF.bVD.LSDg+dFL72RIO.3JD.3HD.F150N.3JIKOfKP.fId.OQ.vkBAOfyuRLf.WL4g.Wkf.Gkt.W2VD3pIKD3hDDXBB7Dg.yLoKrSylzw.9KcxC+kIjvewqsU1Flzy8fuKYO3KSxB7kIB.e8UCfIE40i3LDj2HA4s7jF7AHxab.8VH4A8Vl35aDh9tp8nukSVnukHt9R.fmH.3JSF.7o.GpcHAhi.PjO4gBWhfBGgnvmydT3RIKT3xDTXBJ7DgBWcxPgWFHobbihCLXljGFbQBFbDhA+L1iAWLYgAWgfASvfmHL37SFFrqso8K36YvjP.p4sYYaEUxK.ceWjnynblJTOSFVFYHsyrMPp3n4ho1sJLDg4VJZGbD0sGqx1LM.5+nm2B8S3SjZAbM5k9naqUa.cPrAJ6NG5YDiv8Z+YstGtv5GnsaKBpQfIt5ADt0+Fpdwfn51t4.l8zclf0+ejkka1SyKErF7iFV7YOUubPTcGCH0rm9WIH5uCSEbFa3tlc36Yk3pTzdkD7tWXCGqKsWs.YiEWdFYKNlUctUZzQEsqbUULq9Q5LUL2nWgVxbjuxhs.KrLnKuPW1ilCNeElYJMc01xoHVel8pIGmSrGMAFqjPlBun3ZcvG8g1LSRJOcpDe3d+cmutqyqO6zYd8e7u7s+A07yzoGuQ3O99neVMB+FM+GdCjQPsEALe46NnK0HYd7T5rGYWoSQ4VoqTwNZo+q4sPI7vku22R6XYhRynn0kLpnGsDVzvm2nn0MUwvgQcEDiVvJg31CWL58sBbu2HjifFv8d9LpItLL0XBn1j1oeTB5b4Luzper1u86pzC8S+NapEp+Jd6HQ+wO6keTM0fRoxJb7B6YpZPnc62t1D2ya71gSCtIWeNYmFy1T0xx3hipvyIbnFSfDxtSN78d3O8BerW4q8OWahoMB03VF99743PHZFoSqDWln1J8ru3O74es+rG3MqjyGqzokQ5TnowFK1n+wZ9zFwjbZHYDj2Hf9SFk.J8jcRMl0gDEsDrsCJdGMl3oileaDUIQgFkOhMR2Sasz7oQpZxwHgBpVjZjT9FH6OyS4jh4Y0gAdKdZG42Q0JkTLTOgVD5hXyzpe6uPu2+JeI+1cq3zxLEleS.cld9VEzicFic9NulHaC+7gyEenxxNR6KrXnO6Eiv6SXRfYbOrU8.NwiUFKU9a+mvjkTIPO5S3Ln23N8.DBzK7IPueze5825SSHPuoCA54drBOwRfdgntehf.8RfGfGWliLYWKNU10h+aau6pOy23+sVBcWKNgeHj72wc24cPle7pxO7mm+9bTE3MKdgYvE00kOvbo712GMW91qYYaea2miJ6.RKjr1+2QCO3EvY5S1+25eqFNgijVHDntIl4zSsCg77HjmGg77HmZmoO6kle97nqS3NOB24Q3NOB.bzerIc7H43mXI3KlvKlBlPQRvDFSvDx6ofIT7jOo1QPEIASv8fIThvEd9rypwF6kg3KarQFd3VcBa3QfsIzQ5zgM7Jl.wgIeRphO5vC2pS3COBNLgURmF7gWoDHJbNBJbrQHdI1OMqDFwifBG8eZV8UfVWvN9saLD7FV7M5wJXFQ2lPGm1KAzz8ZZ6aH068ux29+dWqAgxg.a5Nm8gs+O3DNbsIPmFCa0nFW1QN4P3JnI8Y3qIvJ3bTaGCaz4F2yElUX3Ac1YcQ8MY+q+w0bWeHDKW.T87mb4UNWXQtvrGpKJq2ZYixN2aYSXPNBCxQXPtIlA4VXVfA4VVmA4bk.4bGLC2RXh.4bRgy37JEO5XzdaWlONpfy6Zf+Wb+kAG0lsEmD8Ip012QSsg55.quolbfCiwvtMd6juZ4gyB1FIpZOyRfqAm8AblzQ2Aj0ENmKHbszie7i+7dmn4Bh.unh.SOkjX+LNvzXB9gvBzuHn6fNx7TNdF4USNXSDNsOnQMeUBocLzKXiOsDDlHmUD6bllx34fWCeFkezEpliltj4gpOKn35EXXXJmqb4BUJPmOWUJLtTyKw6v5nFKAPkn+DCzCjOGct7vGnZ0JEpVVyEZa3RMT4UzoyFaTZSriW0FyHg5cuIsJl6aU37v4NRHeYblP9xB0Ha7UaHvJJdWege9Op1zhOhBJqekwE50ab5bq2224Fu7e6+ie04BIBc1d1xycUN.DNUwosxFez51+GhjI+o+mOfPqatXj9ZJTw4OfPqaim8DeqG3W9JkYNic27NdjKa4nYVhcyyjw4+xGr7evE+M+dytzeK.rCqPj0aa+1ne+G075L9UV+QORGVgtkwuSNEwoZwFY4seu1yVjk26.IxSYlxyFYHIQSdV+rn4myf0hprj2XHIOeMkzIgl7ljH9kwHdu56Omw.AXevsiHBsSIBt9fO6VzY4bYkINGfYNSWsboxzkpPWp.Sw7L4obhg6TYsLGmTOXb1PC45oQomSWxJTFNi8BEUmxtsramVcvzvPXOW24lcH1DMaoBO2jrrgRMjKzf2z2l3DK4EpMbqp9qb4REpvTrBCkiLj2nQaxGElwxpYl66zhZjcKNhoU7QGvaL6WQ+ERaOtNa.eQaSngFGavLbdaF5qklDqYfhSV1mONHC3a5OWxHKUxEMkOLnJYKskKkOWUFX64J4pTrP4pkorYS8oaE7TvBmninHsebzPgcinWYVk53.i+CigqMVcvcgSBb+FcB.4fgfbLKgbTND3oGl4piygye4BHmlinmnzJQ3oGxg4fbj5hehRqXxC.tLA.N9IJsxDtkf..eRB.lY9gnzFcpy4mvoNyj7m5r2X5r7SkoNm0KK1oupLFYMYC3ToYHSkNlIc7XimvRfbNdQhmbwFMgkTI2wxjuTDDO4llbNd7xRXIPhGu.AEN1HIrj52qmBDTXBJ7DgBWZ1givJj7vfIDla7QQXXFcBCgQvfmW+3OjEzePW+rcfNs+YTqkAMglu1s8Pw3IBsv2DOkZrllPlyxiaQaOoAtFpr.H9LAf3uRRxew4Wh9pz7KQe4I9ErYS5IB2.D1b803aMWN4StWg3nxdmz97HAAsxvPwDULG44UpfKVtPkbL4qVQYSoSS4MVjbtkCu.gKGdcxg4tB.ukkdBz9H0g6fw2Wg3pTObQQAf9G117bgNEXSItOw.NglG67VJlw54UgQ+7pXY8CYXpVMWghkXXxWnR4JEiNh8JLWwQUyho5jy.Zy2Ak6qiRxeKUsEUdS0Lx3e82YeCXO97jTonN0Fi5cWVAYr9JmUghYTOPRzUYPKTLVweVP00qnblfJQWoX9bLkyOpfTpPY5xUnKmOWohzUJoHHK.dditLPqY874ejymhJL+kWDZ7pXcSLTA63BYb7rz2t+94LHEPx0wgiGkmK6BNd9mv4GtwsF7odxvfabFKIEL9iVp0yc+XOdBSBu13c404S5R.DXfuIklQbmH3JP9vxhuDXCk.JP49niVHRnGs8tq9Qd4+R2Yf.fw3OH24FyoO1q1roAU4D.ZDpzbDI4D.yS44P5wgZpQEUyHriSfMTENwPQNQpYJwv1RK.tHkmlM1K80qG.5CBsNW+Q+pe05dkfYUY0CS1lgr.QPDS6oX129wOt102908fw4xQrwQ4Um.iiNyPLMrMMn7+z38EGlUaBLLFDDQPh0.zz7c1d2cpEz9T2L.UHwnoQmdJlFsZ9.IYSiFalLMrKOuoRMuxuGYZMWei+Uzu2susK54k2rK1DgJqBmdLBrXRdnYgyIXPT7Zd2+ju4LF8j0Y1idx5j.nmrND5IiPOYyIzSVVXtCy54atIaQP9btZEl6XlL0y8UBjUxzV.CBkjQnjLxogjPIYDJIiPIYDjiPB4Ha3yHNl2SnVm4zbzIqlvQNSARJqL47jPNOImjNOIUmQHor7DVhjPRYIOVhrJA.l..SHorfNYZlS9Sl1ajTFSBXxzgBiwQlKMgSxR5Lw.gSxHbRFgduINtMGwIYEIbRFgSxRdbRFgiuInvyMbRVB7CcSdBFb7yIY4mGXmWBFLgSxvwf8W7ql.9HaIM9HiPGYSO5Hyya5qohBTY9kOxpR3iLW604oUWIv3F1qGwAW5EmrOl+q.+Yewex2Z6c6UKB3ROGixxrWC3xDZIiPKY5oYGwi4gSMlmftF+xy4scJ7TghwVxuTLlcSuoP8QOlqOxCNTCm6Yse2tuwDOE2oA2isHvlCN3nmmwf4GepYQRNKajSxYoRi0Haseu+8a+OUepw4Yp8xI7c1336rbg+56G9DllGYAfDFsoAkZ4OyyjYyiqMEHOsL9l7zFJ0269veez+D+J0LSWFSyST1SlvfwzlFDjFrVQMBjOX1kGvhbZRKvFoRyUjk1eHp+88+hOfPVZQSqo4MxRSyLUymlo7IGxRK5XomW7G97u1y9hmudRmkdBE9iyalju6K.au76+UlqHONeP0UDliivbb9vzrWa3um8yUmvbby1LG2TmlzVTMwSAZvJOPhEIupk8vqMsjKo0tshFXXU9vbx5DKlQEvNRbJQQA641Qrur06kZgPhI0TLfVn+sUAZAWUTZigLY1u.vPKVyH3qlBG8VHiYekOvKXMoRaVTy3rnlCSTwCssMD.2MEGHyKr21rxR7ncDz0Gzsg3.ol5T1VechAS65b5gPrAmPqb5aWHsDoQWmRKQ5g6knSJkQW1lRh2QaqFoPVXJ2AZaEfceQMx2Fc8ZzTGhGpqt7s3uSyl5wh192gI.uS9.7NEBv6TL.uSo.7NkCv6Tw02Ya3kZwiE0GCdicthZXqSYr5EKP8+CLvf1DE
              

              There are some things I would like to change how it responds to midi cc's but I am getting close. If anyone sees anything I am doing silly please let me know...

              lalalandsynthL 2 Replies Last reply Reply Quote 0
              • lalalandsynthL
                lalalandsynth @crd
                last edited by

                @crd I should have some time today to have a look -,

                https://lalalandaudio.com/

                https://lalalandsynth.com/

                https://www.facebook.com/lalalandsynth

                https://www.facebook.com/lalalandsynth

                1 Reply Last reply Reply Quote 0
                • lalalandsynthL
                  lalalandsynth @crd
                  last edited by lalalandsynth

                  @crd I am having a hard time deciphering what is happening in this snippet :)
                  Seems like a very convoluted way to achieve something that should be native to HISE.
                  Or at least achievable without all that effort. :)

                  https://lalalandaudio.com/

                  https://lalalandsynth.com/

                  https://www.facebook.com/lalalandsynth

                  https://www.facebook.com/lalalandsynth

                  Christoph HartC 1 Reply Last reply Reply Quote 0
                  • Christoph HartC
                    Christoph Hart @lalalandsynth
                    last edited by

                    @crd I see someone had a good time dragging cables :)

                    But yeah, that's a bit convoluted, so maybe let's take a step back and try to solve this particular problem with the minimal effort. If you use the filter's native bipolar modulation with a (unipolar!) envelope and and a bipolar LFO, what is different than you would expect?

                    HiseSnippet 1321.3oc2Y8zbaSDEWx1aacZaZaHEZtoCbHYnjwNMDJCGpR7eZ7fcrSbnEFNzYqz53chztBoUgXX3FeDXXldiKbkOCgibiOALkuA7M.dqjrsjiFWG2DhC9fF8d6ezu268aeucW2xkaP773tJp42umCQQ8Vn18Xhtk5hoLkZkUTmG0.6IHtZgp1pmC1yiXpnpl8oREp4yoD76uexVXKLyfLTkhxy3TCRcpMULTaK8OiZYUEaR1mZGq2qqWyfyJws39.dxhJn3fMNDe.YGrraYPJpWqhIUvcaKvBhGzms3l8Z2k+Mrv9+LpG8kVDoPQk1vDEpVoTWpkYq91pmhhJp0PKOankuHpA0jNP+POvcCZPa3Hh6CTyLNHU7L.I0XPJWHjtGpsgK0QLrEIdtIpFCBHcvfqNNTB6qh5InRbnCLwp13CIUcAgACX4MJT3gZviU9zN9LCAkyz3rc3BRS1xqL22MW94994zFsoNcRsM4mwkaYQbSsYYz0cbCbYlu8KItOT6HrkOYPGAyOoO8ZSlO0Hzpi0QNqFiJZ5PhjqxsLk9J46mNBnD41f297ZkwBrLnDoC5mCwUPkvQsL4HfUGFhxiJS7NTvc.d8ohe.yga5agEIoSx0MQM.9iDwPYfh4QE8hut5LvwJLVN1jBw6gZQEFcSGiYRAifm5h.iQqLuMpRmNDCwP.lCU8Kl1kgS9m+9ge9ahdN9HRPZwfO98Cj6vcs0dJgQbk9thiIw3eLoIFcl3DiMMD.D12Ey7b3djhwm4QZas3sUlH7YI6dnpD8RZdUAyKV+tgdekqEWYKLKwjAxIloFziGJ95mTgggfPaBXMlM8L.iU56hS0a4a4QdN0TzsX7ANT8ZwUuM10DhKFIHhYSxDxMYIORtlLV+SIS80tDJdb9rv9RL2Sh5a46iw1TaGKRE1QDKHAa.FW.xn1A6aI5qM4ZqFbF2oKmQSD02iHboGb.IAYJUCZSg.1UwPMKpuGwhf8hsd680qSYDrK3mHSou3rWqO030CPgvUSlPP6paMir+utlQZT6EPs3V8BIpUoVv1uB.QdTnv3pWnnT0k709Dlw.u0Jm7S56FI7yu5UKnmjZ9.8c8wVC8tZKszu+aaQc3VX2T77u9bjImaBoGuKZfQ8VwiyMYAo2vN8lXNsLxb0AuKghB5ZRm8EEtKlJtSkcjIFvuaHvuNZysK2duH+av6Zu0Y5iL6zrN8+5a+gnj9k7cOhjbuOF3dmR6nUH5qoNAPYb0aCFe7pFAS2.E+4un212SjXo8WdxoJ1rtdEC9EWkFzDRctc7JMy3z746i0vHxrMXuEJfVbUvudGTDg8JgicdTzZoYEW6cBAKBUuZyncaCuoM.5EGKFg7T+Xr7XYFcO.Z+50ert7rg0XidVM4QQitMhAVacxAv2Ltl8I1N7QOsTaaNWzkxNH4INWTuNm6DdbMyDmOqK3va1oiGQDeZJA7FtcerDbWcsEDmfKQQ8qPar9pvuNef74mTBd7nlmOxJmeIJyLgzt2IHnNH5ICuy3KTBQbhseMyuzd2qNa5RdB+imsOa16gZ5YrlVvAzztbNg1dbeAjloAF181wPRxc7say8cMH.JYLhEL4H0LxTIgxEjxAYnHLy.g+A9E0XQorZTiE623+IeCargK+EFgWfsLuwMBz.1MK3eoHOpgTVqnRvkZKKGTX0BJ1TS5KLLjmB8CAxV5iYsoXLOZJFy5SwX9noXLaLEi4imhw73wNF48usoOTdJjyCJZUIrvj5fBbpYU9W.T1VCU.
                    

                    You define the base frequency with the frequency knob, then set the modulation amount using the intensity sliders for each modulator.

                    Christoph HartC C 2 Replies Last reply Reply Quote 2
                    • Christoph HartC
                      Christoph Hart @Christoph Hart
                      last edited by

                      The next step in complexity is to use the native filter module, but add an envelope scriptnode modulator to the frequency modulation, crank up the frequency knob to 20kHz and then create a suitable modulation signal that matches your desired behaviour:

                      HiseSnippet 2746.3oc6arDaabbcojF4PZGG6DmOFvGlVT.aW3pJJ+IsH.Uz5mspsjnMUbrABhxvcGJNUKmgY+HJ5zBT.2CoEEnGxIeH.s26Ieq4RcQOEzVf.XfdoWbQO0a9Z6kz2L6uYIWRQRKoXWGi.aNu426+ucRYGgI00U3XjK+5saRMxcDTk1bu5yWmv3FKufQtihVg35QcvAflqcShqK0xHWtwuhDPt7SXn9ySlcNhMgaRS.YXbKAyjdcVClWBzxktFy1dIhEccVCsUegRKaJ3yKrE9.9LNZZilDysHaRWkHW1XHibStnEyS3Twi3QcMxMwbBq1UpKZwCV+sXtrp1T4fhFUfCJ.7RBaKIFKgZLeclsU4H510.NzxIbgwC3Bm.sByhECOgabL0D3jcnyOxMVZza7TnWQczaZMzKCTJmFJMQ.JcbTESGVSujYj3ygQKyAgSMBv10Qkf0Zj6gn4EvB3dS0frEcIGXP7FNykld5ygg+5ruSMetoGSvwB9pBO5Z7yb1Bebg7E9YEvcNUsZYNm7ZbD11TmLmVJoc52FOC2uQUpy4vaSr8owKDH+z7TTu4o5hby.pVagB9xbl2ZMo7doHXDxpfe8tKu.wiHEDgvf00j53wjnPtEnaCZ0Ahk7nEnta4IZB50cIy.sEgkuMwKsJjztIbBfGjRtIENbWlWac6p8L8pAEEONpLyyrd133XYfi.mZ+.GCsFeYzh0pQM8RPvIPKc6C.SOTv8W.cYNwtsKMxlKZXwT3vb9.V5TgcWMeZOrTYGPag1JTaIQlN9.ivE6O+5lBeOFeyUHdNrc.bdU+FU.OnlTfcw4TaoQStwjp2AimVNVhDUnbK0fuB9S3jEkiyENYwnI0kIud.kbXz6Q1lphUnXJutZbMgSC7UnbpiTgpXehV7kCZzhlCbzh0L8.TXcGB2sovkVT+j6XtYzmaApmOO8xC.kZURxaIf7zV2IJEAbFcfkI7TGFLN0IshTLEM7wytHm.B5JTfZrVy0DHVIuSWWorusK88XVd0KpuwDvynC9pDGKPtXlx5b79E3r3+2D374.evobvjOBGqvZzzltHeapMDnQgiuJDYoFw21KBZZyoUDbQy5BNKkf9lTvKvlaRSo+jIAcYOOH6Jc81aRsoD2DSrRaU55LNk3.7I5H5qu3PmmSlxq2BEftXoO.7yuwNG+EmXmgp1uJprvtcfh5RLauvXn4QAC5WHBCikbnejOkalvs9jGU5FIq.WJsp4aU5F9D6DtK9jm7K9SywZJrINOsb9cQSdhAT83MPwDE9qe+OGJ.SOYXsEQdZhwaEJepvYwQSiimeWbIgu2B+pRc5R5C+uW4QY6RJpnkygFlBDP6UIRkj9+pTuVBmsTbqveCR0.dgqBI2fFxK1nQBu3x11hVIp6xbkUflWznIKTPCrofgQomc4FBe3RCyQK2XqpznmbIhIblsKSf7q.eJx5Y.UHpyTlwpR8EWRULHvMJSbfpnAKNYALpKIJ0ofjAAjpgj3UkYOtbdI0Od.1fjW2gPtMAaKidhYASqewix07xnZrcN+LaT0V.gmRcYuo1kouH8qI+j124AeUpq51n0qybwsfLqvVzZv1wd0o3pPrNbsHiwBmoE8zvBbaHDd0wLOLAWE9aWAtEEyoTK0lTWKVcsER6DMlXFSiXNAJ37nVazLR.jllNkhl.86oxXkYSX5WaZ9oVUpA14xQfI1XRbYRjxY4sjlOR1bPrc7MIMfZWSbEsNwYSpm5.5Dnr3B3HV1RdXR1mQrVkD1gPAmcPBspREWgwCuOszeI6zArmLqgl5ojNh4.4lXPOh.Uz.vW12Sz.bGnvACsSC0wo8au+8+Cy10oU52TphGsoVkbp0IugWAUQIlfBtTkizAZbmR8615It2wsESO4QQ7xt4XZZYgBiT5UEP.Cn9TDKqdZQlgohTKZrTxhb6wxBMMzTBci9p6dDzxt2RNqIwNhW.mlFO3nHcufF6h6yzrgG792YWLrxx1FgjL2dwzi2eaMuOlNTfSnbj3x1jSrgeR7vvztP41v.Gg+l0UyGQMmS5AhUCbHcZWvMzlf431.Pvyj5DqBmjeUOG.K.OT0bDMh8s0G4dDAObx5m7GeJj0oBjPpa41geviEK+lJX1gTDg5q9yqH6JhFsFREAwbMpzRlwdhiuwzAD1DPNUkOhaGKu6YkQ2so6D0+vEXPXQR6fdC41EDI9wsn6D0okEgbbrfZtUaWRXo8L9RZRnIGHqwO4OmourJaQaEv+CgVZ0U9Bkr7kBK0xnqyduv01iWoZ4YCByGbMWmBRci9DPXeiPODTesIos1c+v+ymc+e9uqzAvcOI5pBaq8YVbdTEeWoau9eO6SjXdTT+DzNnm7k+0eco8jXjk9m28WjRQZdems6Jd7imcOMd7jnq.d2xfclQ5S6oQ2xirqIF9.a26AiRfs7HNbWLKV5K60ztrnEDeXeLZYY.JVilBGOB2C6IvM88TAiDwM0Dy3.bBNb6XENCwvLI9Pt3xrecZwfeEEcykFbBwYoKOVI.t.BiFTPXgcohiDZLmFMdDTBV0MO0gNk1zCKOcXi.jKUDfzN7mb3UeOVodq9pWAP1dCFvb79NkB9RHIcnYfy4VgNcehS2Sz9HpaAJTAru5ejh8IC7zWxPlEb45c3Cbj44InHXne.kV8gQtpNSuAoCyjSjjuVxJx1RI153ag9wP.ILjdL3CHXW3ZDKvdmi+9Xge5lG7BRJciOzgh6Q4ocEJ9CesEdTOSo6uOgwsu2HjpyPe4YlGvu+Gd9+0urzywwl64AjttbSaVyz1MGNnDQ0DCXqxtF55TYvU4K3.p1yIUAjUo0IaScg+sFD1R1qJUojPDTUrV4JaJZQcfPlVzB64U2mgmxdvLPH.OxrbYI7HhcrqkCpWlhaDKzvhZgcdS98Bj0JaGz3pyzpNyrtDPPm59HelyVskkKSz2tpcwxCY5otHtAkvcwEmdqqd2ydNbUHAkpvN.cWFeS0snswPFruqbNRHWLtuzgcKj0PtbJ1VrIwg4UuAyT+LbH7MoEJ7ivpd..+WchrNeetrchBPhBdc5HCG0VhHZUOJ2hKpFiFtT6ZwYTIAExWTmKrikVZc32guVgcIyndqKLfVimnTW18O9Semdng79e12l9SZe7R8NXUtIzQg.Kn4jdN5FatPotqP4QcfM+ke5+9suWi+1rwK66N4mdZ4WjnC+65CAbHpEmY161La34v2kyvulvgQKx2N7C.Ln8aIFvNydwOP9oTFLpInaUCH5m8MmA5e8kVqmne17ftVzfg9oxWOEUDlOzHKCJHIhJMofUxPSCW5C97kOU9+wrOszfddzCZ92iTXq4DhsZPTeYq80231wUBkms+P8mDE9kgwpxKdlFWOJ5FOaifxm2yNOaihuIZMWyYvpWmA9qmmmwA7S06nQOUuJPFSIOUu2PMFKe6Z83s5M1A8a0S+fqPavVWvkb5DfuqKUZkFzC.M3yKHNYN0SlcIfHybOUHd9NJYez2de+9gxMw27P4NHenbyb.+P4fnwY8P4FJdw27P4dA5gxcfDH3f3NZPLcDaD9BVTefREDft4p+e1IOZE4XbQisCaOGZ5ol1P17+MLMkr3uG3vL68LyHrmyOB64Bivdt3HrmKMB64sGg87C56djAWB6crzjC.TdwfNSlK4c6Ltw+CaiObaA
                      

                      cdd261a0-b4d3-4bd2-8033-73f7f86c039c-image.png

                      This gives you the full control over how you want the modulation to behave without going too crazy on the cables. A few remarks:

                      • the LFO on the right is polyphonic. If you don't want it to be polyphonic, use a global_mod LFO.
                      • this approach also gives you the option of shaping the modulation signal from linear to (somewhat) logarithmic at the very end of the chain, which removes some of the quirks of the native bipolar modulation implementation.
                      C ustkU 6 Replies Last reply Reply Quote 1
                      • C
                        crd @Christoph Hart
                        last edited by

                        @christoph-hart said in Has the modulation system been "fixed" ?:

                        @crd I see someone had a good time dragging cables :)

                        But yeah, that's a bit convoluted, so maybe let's take a step back and try to solve this particular problem with the minimal effort. If you use the filter's native bipolar modulation with a (unipolar!) envelope and and a bipolar LFO, what is different than you would expect?

                        HiseSnippet 1321.3oc2Y8zbaSDEWx1aacZaZaHEZtoCbHYnjwNMDJCGpR7eZ7fcrSbnEFNzYqz53chztBoUgXX3FeDXXldiKbkOCgibiOALkuA7M.dqjrsjiFWG2DhC9fF8d6ezu268aeucW2xkaP773tJp42umCQQ8Vn18Xhtk5hoLkZkUTmG0.6IHtZgp1pmC1yiXpnpl8oREp4yoD76uexVXKLyfLTkhxy3TCRcpMULTaK8OiZYUEaR1mZGq2qqWyfyJws39.dxhJn3fMNDe.YGrraYPJpWqhIUvcaKvBhGzms3l8Z2k+Mrv9+LpG8kVDoPQk1vDEpVoTWpkYq91pmhhJp0PKOankuHpA0jNP+POvcCZPa3Hh6CTyLNHU7L.I0XPJWHjtGpsgK0QLrEIdtIpFCBHcvfqNNTB6qh5InRbnCLwp13CIUcAgACX4MJT3gZviU9zN9LCAkyz3rc3BRS1xqL22MW94994zFsoNcRsM4mwkaYQbSsYYz0cbCbYlu8KItOT6HrkOYPGAyOoO8ZSlO0Hzpi0QNqFiJZ5PhjqxsLk9J46mNBnD41f297ZkwBrLnDoC5mCwUPkvQsL4HfUGFhxiJS7NTvc.d8ohe.yga5agEIoSx0MQM.9iDwPYfh4QE8hut5LvwJLVN1jBw6gZQEFcSGiYRAifm5h.iQqLuMpRmNDCwP.lCU8Kl1kgS9m+9ge9ahdN9HRPZwfO98Cj6vcs0dJgQbk9thiIw3eLoIFcl3DiMMD.D12Ey7b3djhwm4QZas3sUlH7YI6dnpD8RZdUAyKV+tgdekqEWYKLKwjAxIloFziGJ95mTgggfPaBXMlM8L.iU56hS0a4a4QdN0TzsX7ANT8ZwUuM10DhKFIHhYSxDxMYIORtlLV+SIS80tDJdb9rv9RL2Sh5a46iw1TaGKRE1QDKHAa.FW.xn1A6aI5qM4ZqFbF2oKmQSD02iHboGb.IAYJUCZSg.1UwPMKpuGwhf8hsd680qSYDrK3mHSou3rWqO030CPgvUSlPP6paMir+utlQZT6EPs3V8BIpUoVv1uB.QdTnv3pWnnT0k709Dlw.u0Jm7S56FI7yu5UKnmjZ9.8c8wVC8tZKszu+aaQc3VX2T77u9bjImaBoGuKZfQ8VwiyMYAo2vN8lXNsLxb0AuKghB5ZRm8EEtKlJtSkcjIFvuaHvuNZysK2duH+av6Zu0Y5iL6zrN8+5a+gnj9k7cOhjbuOF3dmR6nUH5qoNAPYb0aCFe7pFAS2.E+4un212SjXo8WdxoJ1rtdEC9EWkFzDRctc7JMy3z746i0vHxrMXuEJfVbUvudGTDg8JgicdTzZoYEW6cBAKBUuZyncaCuoM.5EGKFg7T+Xr7XYFcO.Z+50ert7rg0XidVM4QQitMhAVacxAv2Ltl8I1N7QOsTaaNWzkxNH4INWTuNm6DdbMyDmOqK3va1oiGQDeZJA7FtcerDbWcsEDmfKQQ8qPar9pvuNef74mTBd7nlmOxJmeIJyLgzt2IHnNH5ICuy3KTBQbhseMyuzd2qNa5RdB+imsOa16gZ5YrlVvAzztbNg1dbeAjloAF181wPRxc7say8cMH.JYLhEL4H0LxTIgxEjxAYnHLy.g+A9E0XQorZTiE623+IeCargK+EFgWfsLuwMBz.1MK3eoHOpgTVqnRvkZKKGTX0BJ1TS5KLLjmB8CAxV5iYsoXLOZJFy5SwX9noXLaLEi4imhw73wNF48usoOTdJjyCJZUIrvj5fBbpYU9W.T1VCU.
                        

                        You define the base frequency with the frequency knob, then set the modulation amount using the intensity sliders for each modulator.

                        Which frequency knob? How does the bipolar freq knob interact with the other knob? Is the bipolar freq knob setting the amount of modulation? Isn't that usually set with the setIntensity slider of the module? Which freq knob is setting the cutoff?

                        I'm having a hard time knowing where the modulation starts in the above snippet? Is the modulation starting and returning the the cutoff amount?

                        lalalandsynthL 1 Reply Last reply Reply Quote 0
                        • lalalandsynthL
                          lalalandsynth @crd
                          last edited by lalalandsynth

                          @crd The Bipolar Freq knob affects the cutoff point, it probably shouldnt.
                          IT causes strange behaviour.

                          If you set the Bipolar freq to 0 , turn on the lfo .
                          Then you move the Bipolar freq to the right , and it adds to the cutoff.
                          Move it to the left and it subtracts from the cutoff.
                          At no point does it add and subtract from the cutoff, which is what it should do.

                          Also the amount possible is too small.

                          That goes for the envelope as well, the envelope should be able to open the filter properly.

                          Desired lfo behaviour. Add and subtract
                          https://youtu.be/im6ysEiYIcE

                          https://lalalandaudio.com/

                          https://lalalandsynth.com/

                          https://www.facebook.com/lalalandsynth

                          https://www.facebook.com/lalalandsynth

                          1 Reply Last reply Reply Quote 0
                          • C
                            crd @Christoph Hart
                            last edited by crd

                            @christoph-hart said in Has the modulation system been "fixed" ?:

                            The next step in complexity is to use the native filter module, but add an envelope scriptnode modulator to the frequency modulation, crank up the frequency knob to 20kHz and then create a suitable modulation signal that matches your desired behaviour:

                            HiseSnippet 2746.3oc6arDaabbcojF4PZGG6DmOFvGlVT.aW3pJJ+IsH.Uz5mspsjnMUbrABhxvcGJNUKmgY+HJ5zBT.2CoEEnGxIeH.s26Ieq4RcQOEzVf.XfdoWbQO0a9Z6kz2L6uYIWRQRKoXWGi.aNu426+ucRYGgI00U3XjK+5saRMxcDTk1bu5yWmv3FKufQtihVg35QcvAflqcShqK0xHWtwuhDPt7SXn9ySlcNhMgaRS.YXbKAyjdcVClWBzxktFy1dIhEccVCsUegRKaJ3yKrE9.9LNZZilDysHaRWkHW1XHibStnEyS3Twi3QcMxMwbBq1UpKZwCV+sXtrp1T4fhFUfCJ.7RBaKIFKgZLeclsU4H510.NzxIbgwC3Bm.sByhECOgabL0D3jcnyOxMVZza7TnWQczaZMzKCTJmFJMQ.JcbTESGVSujYj3ygQKyAgSMBv10Qkf0Zj6gn4EvB3dS0frEcIGXP7FNykld5ygg+5ruSMetoGSvwB9pBO5Z7yb1Bebg7E9YEvcNUsZYNm7ZbD11TmLmVJoc52FOC2uQUpy4vaSr8owKDH+z7TTu4o5hby.pVagB9xbl2ZMo7doHXDxpfe8tKu.wiHEDgvf00j53wjnPtEnaCZ0Ahk7nEnta4IZB50cIy.sEgkuMwKsJjztIbBfGjRtIENbWlWac6p8L8pAEEONpLyyrd133XYfi.mZ+.GCsFeYzh0pQM8RPvIPKc6C.SOTv8W.cYNwtsKMxlKZXwT3vb9.V5TgcWMeZOrTYGPag1JTaIQlN9.ivE6O+5lBeOFeyUHdNrc.bdU+FU.OnlTfcw4TaoQStwjp2AimVNVhDUnbK0fuB9S3jEkiyENYwnI0kIud.kbXz6Q1lphUnXJutZbMgSC7UnbpiTgpXehV7kCZzhlCbzh0L8.TXcGB2sovkVT+j6XtYzmaApmOO8xC.kZURxaIf7zV2IJEAbFcfkI7TGFLN0IshTLEM7wytHm.B5JTfZrVy0DHVIuSWWorusK88XVd0KpuwDvynC9pDGKPtXlx5b79E3r3+2D374.evobvjOBGqvZzzltHeapMDnQgiuJDYoFw21KBZZyoUDbQy5BNKkf9lTvKvlaRSo+jIAcYOOH6Jc81aRsoD2DSrRaU55LNk3.7I5H5qu3PmmSlxq2BEftXoO.7yuwNG+EmXmgp1uJprvtcfh5RLauvXn4QAC5WHBCikbnejOkalvs9jGU5FIq.WJsp4aU5F9D6DtK9jm7K9SywZJrINOsb9cQSdhAT83MPwDE9qe+OGJ.SOYXsEQdZhwaEJepvYwQSiimeWbIgu2B+pRc5R5C+uW4QY6RJpnkygFlBDP6UIRkj9+pTuVBmsTbqveCR0.dgqBI2fFxK1nQBu3x11hVIp6xbkUflWznIKTPCrofgQomc4FBe3RCyQK2XqpznmbIhIblsKSf7q.eJx5Y.UHpyTlwpR8EWRULHvMJSbfpnAKNYALpKIJ0ofjAAjpgj3UkYOtbdI0Od.1fjW2gPtMAaKidhYASqewix07xnZrcN+LaT0V.gmRcYuo1kouH8qI+j124AeUpq51n0qybwsfLqvVzZv1wd0o3pPrNbsHiwBmoE8zvBbaHDd0wLOLAWE9aWAtEEyoTK0lTWKVcsER6DMlXFSiXNAJ37nVazLR.jllNkhl.86oxXkYSX5WaZ9oVUpA14xQfI1XRbYRjxY4sjlOR1bPrc7MIMfZWSbEsNwYSpm5.5Dnr3B3HV1RdXR1mQrVkD1gPAmcPBspREWgwCuOszeI6zArmLqgl5ojNh4.4lXPOh.Uz.vW12Sz.bGnvACsSC0wo8au+8+Cy10oU52TphGsoVkbp0IugWAUQIlfBtTkizAZbmR8615It2wsESO4QQ7xt4XZZYgBiT5UEP.Cn9TDKqdZQlgohTKZrTxhb6wxBMMzTBci9p6dDzxt2RNqIwNhW.mlFO3nHcufF6h6yzrgG792YWLrxx1FgjL2dwzi2eaMuOlNTfSnbj3x1jSrgeR7vvztP41v.Gg+l0UyGQMmS5AhUCbHcZWvMzlf431.Pvyj5DqBmjeUOG.K.OT0bDMh8s0G4dDAObx5m7GeJj0oBjPpa41geviEK+lJX1gTDg5q9yqH6JhFsFREAwbMpzRlwdhiuwzAD1DPNUkOhaGKu6YkQ2so6D0+vEXPXQR6fdC41EDI9wsn6D0okEgbbrfZtUaWRXo8L9RZRnIGHqwO4OmourJaQaEv+CgVZ0U9Bkr7kBK0xnqyduv01iWoZ4YCByGbMWmBRci9DPXeiPODTesIos1c+v+ymc+e9uqzAvcOI5pBaq8YVbdTEeWoau9eO6SjXdTT+DzNnm7k+0eco8jXjk9m28WjRQZdems6Jd7imcOMd7jnq.d2xfclQ5S6oQ2xirqIF9.a26AiRfs7HNbWLKV5K60ztrnEDeXeLZYY.JVilBGOB2C6IvM88TAiDwM0Dy3.bBNb6XENCwvLI9Pt3xrecZwfeEEcykFbBwYoKOVI.t.BiFTPXgcohiDZLmFMdDTBV0MO0gNk1zCKOcXi.jKUDfzN7mb3UeOVodq9pWAP1dCFvb79NkB9RHIcnYfy4VgNcehS2Sz9HpaAJTAru5ejh8IC7zWxPlEb45c3Cbj44InHXne.kV8gQtpNSuAoCyjSjjuVxJx1RI153ag9wP.ILjdL3CHXW3ZDKvdmi+9Xge5lG7BRJciOzgh6Q4ocEJ9CesEdTOSo6uOgwsu2HjpyPe4YlGvu+Gd9+0urzywwl64AjttbSaVyz1MGNnDQ0DCXqxtF55TYvU4K3.p1yIUAjUo0IaScg+sFD1R1qJUojPDTUrV4JaJZQcfPlVzB64U2mgmxdvLPH.OxrbYI7HhcrqkCpWlhaDKzvhZgcdS98Bj0JaGz3pyzpNyrtDPPm59HelyVskkKSz2tpcwxCY5otHtAkvcwEmdqqd2ydNbUHAkpvN.cWFeS0snswPFruqbNRHWLtuzgcKj0PtbJ1VrIwg4UuAyT+LbH7MoEJ7ivpd..+WchrNeetrchBPhBdc5HCG0VhHZUOJ2hKpFiFtT6ZwYTIAExWTmKrikVZc32guVgcIyndqKLfVimnTW18O9Semdng79e12l9SZe7R8NXUtIzQg.Kn4jdN5FatPotqP4QcfM+ke5+9suWi+1rwK66N4mdZ4WjnC+65CAbHpEmY161La34v2kyvulvgQKx2N7C.Ln8aIFvNydwOP9oTFLpInaUCH5m8MmA5e8kVqmne17ftVzfg9oxWOEUDlOzHKCJHIhJMofUxPSCW5C97kOU9+wrOszfddzCZ92iTXq4DhsZPTeYq80231wUBkms+P8mDE9kgwpxKdlFWOJ5FOaifxm2yNOaihuIZMWyYvpWmA9qmmmwA7S06nQOUuJPFSIOUu2PMFKe6Z83s5M1A8a0S+fqPavVWvkb5DfuqKUZkFzC.M3yKHNYN0SlcIfHybOUHd9NJYez2de+9gxMw27P4NHenbyb.+P4fnwY8P4FJdw27P4dA5gxcfDH3f3NZPLcDaD9BVTefREDft4p+e1IOZE4XbQisCaOGZ5ol1P17+MLMkr3uG3vL68LyHrmyOB64Bivdt3HrmKMB64sGg87C56djAWB6crzjC.TdwfNSlK4c6Ltw+CaiObaA
                            

                            This gives you the full control over how you want the modulation to behave without going too crazy on the cables. A few remarks:

                            • the LFO on the right is polyphonic. If you don't want it to be polyphonic, use a global_mod LFO.
                            • this approach also gives you the option of shaping the modulation signal from linear to (somewhat) logarithmic at the very end of the chain, which removes some of the quirks of the native bipolar modulation implementation.

                            This is awesome!!! Thank you for sharing this.

                            In this example, how would you `invert the lfo?
                            How would you go about summing multiple lfo's and a midi CC?

                            Never mind -- I see the split container makes doing both those things easy. It is already summing them...

                            1 Reply Last reply Reply Quote 0
                            • C
                              crd
                              last edited by

                              This post is deleted!
                              1 Reply Last reply Reply Quote 0
                              • ustkU
                                ustk @Christoph Hart
                                last edited by ustk

                                @christoph-hart In your snippet above, only the first parameter still has the skewFactor available in the Edit Parameter popup.

                                This is something I mentioned a while ago, and to get them back I had to modify the XML...
                                5th point here: https://forum.hise.audio/topic/4555/scriptnode-bugs?_=1636907072550
                                It is not just about the skewFactor, it also happens sometimes to the value

                                But this apparently happened to you too, or is it when importing the snippet here that they disappear?

                                Can't help pressing F5 in the forum...

                                1 Reply Last reply Reply Quote 0
                                • C
                                  crd
                                  last edited by crd

                                  @Christoph-Hart

                                  The scriptnode solution you posted is working really well for me and my use case. Thank you!!! I am glad I switched from Kontakt.

                                  1 Reply Last reply Reply Quote 1
                                  • ustkU
                                    ustk @Christoph Hart
                                    last edited by

                                    @christoph-hart Trying to extend your snippet with a simple LFO, I get a zippy effect I can't get rid of...
                                    As soon as I add more operations after the oscillator, be it internal or global, a zip effect appears.
                                    I tried all fixBlock and/or smoothing config I could with no luck, so I didn't keep them in the snippet.
                                    What do I do wrong???

                                    HiseSnippet 2963.3oc6b8DabiUF2dl7lzIM8eayxtKpHYgPhthRzLoocohCwM+ciH+YZmztaEqH6KddSFuwisw1SRlBHgT4vhDRbfS8vJUti3PuAWnHNg.jVoJ1KrG5J3B25UNU9d9YO94Yr8XOYlPSWxgz326422uu++89rcqXYnPrsMrDDKtUaShf3jnps0cZrPCrptvpKJHdVz5XaGhkDan4aahssI0DDEyuBc.whiI39yymadrFVWgDLjfvcMTUHqo1T0IXzJxeOUMskw0Hao1ja0yJuphg9BFZFs.7jGURvDqrGdWxFX5xxgDDKrTMUGCqpNXGhsf3XyaTqc0FFGnyV+cUsU2QiPunrPUXiXCurgVMJhoiJrPCUsZU74aaAXSqDHExyjBSgVWslZmwCjFm2cBof6fWdHlKL7xGBdk4gWIN3EAjD4fzXLHcATUEKUSmfYn34znU0AkScLH14gBasBhOAsfAr.cmoah2irrEbQma3xWuToqHA+5s+t0aoq3nZnKYnuggCYS8K+1S7iln3D+jIj5dp50ibNJYrLzzHVQNMUSakzMdY8VM2gXcEo8wZsHcVHv9gkon3ko7pbEFWysPC8U0Uc1zjnGmgffmnB9q6r5hXGLUQ3MFrNShkiJEBhKR1GrpYpkhnEI164XXB108ny.qEiZszvNgMgn9MdS.xfP5MpxQ2V0oMueU21UikN6pjM6SKbu.phpiRinwatHvKH0F030yK8LnkpWmn3D.1wPK+9I5RNTfRH2SDCKSftoNVqsMw2uz+xxgvy7s.DaUU89bw8dhbEKvhhbfmEUfdOepimTNw3IB21nkip9tqicrTODv7FsZVEhxpP.QmtNQi5XIli5BvttD8ZJHpRzq4dwKfe7lrL8ZQuIK6OIu94TLN4qhVQyXGrVfUE3LApJOYzWyaZoNyK0YAkSHQyml1DMloNQyPSRKN1nJYxwpS+E6Q0XOTCSEc149lJ7bLHiPqs7ldRP3uB.Y49Cx4UMMzvVz4W1h7CaQzUBMO0ZYUcdKq2CuOotgUyvdmBxqQ1EnI+8tEoooAT9jB+sWsoggSCv4KrM3TxqYXXtjNFjH032jJMv1zrr1DG9sYgV1NFM8wha0PUcHltooD+9nqO6zvO0+VzeeiEfec0MGNWKjghZ5iqQtTa7QUpczdT06K44HYHti8zI.DmXV87eoLq9wcRxWmwtmFQcpcOzkKy95HemboUHPlvdiqwkMT9yK8nge1vMUb.HrkEV21zvlTlem6ZtY3maQhSK8vKmMzLcGOcYf8Jy6L3O3L7QHqf0CsYv0g1o0opI+Ke1brfoUI.2TaSaEfYoxtPaPKMax6oVyoQY9aLX3Y3G9cwV05NZd2EJj4bbGum.8XMlxQ+fMCmCLWzGiUUaZpQVReehFb5MWL9Zvw0piao43OZXWq0MzMLaXnqFRoeaBDQX2cIV7XORF5lNNXk83sguMQi.Iz6Lj7dxqAE3hs.4DIovqCddVwTpudSDCtRz3ARuZbfzSbotFpl7uFphgValA7xpZNdGzpHhcQRGpRPn2xg+3mJeqfUHIG1j8MkuUKrVfj9Cuyc96+QuxqSkVX3bHqjLU9JnP0jMJruGvSxLNC0ukWS87iF0gGbg+k7lUxe53NoSDgsj+kxQD1RPHR90uagWAkkNygFVcmHnuaaPbNvvZOWok2eCRelrv1EjaS7jEa2LPVbSMMiCBL8oMlxcnELZZp5ozAwD6R+x4tYSiV.Q8poSL2FtV2EVFq.6Y6JXndLHViheGIlVoiYUhXITWXAoQErEtIA79ncNzkH9kZwJdD.USJy61e67z4obedFZPTxMNx1D7yDhEYro4IbZICxiooj4Ln5pGd0Y1dGMCHEVHh8FbDieQ7joXAs683WzMo3Aku6gXt..jiiOmBY6dVYRssM8EZgwwkbwAXSNcDqLZvvCfvx.tV5x7MoWAtE4nXo.xMX2col7TQCKmszswMMg5N6DJYKr0tDG2Mn6A8DtqVitY6PKAnik.crwQr8tSG.DystptG83JwEeXWi874D3Lon7QGIf3XocKXlUrguYKGilfKrKFD31MTW61id3C+cy0ytAAZnMhfqkltqiRgygB27itfw8jShZwh8tnVG9oHxWV1qDiyJySYDxtZBDH.ZLMtVsX8hh17VLWHcg3PVWvYgFRoKjns6jnUsuKcVErlur.1MNW8yh3ibIzmPdgECO9CtWhNV8yKGgnh43D+c1o1nsZnZKc.bJNIEKBHSj.+cIa0c0wZvehcjfosgCWCWXYzZ2Fty6yWWQx1PRstjpy2zVRm1oN08gAUcX63NvN0ZGGK.EjZR0sLZ5d2tVFwaA3y5YSq+7+vQPqGJM.tQM6thHd9NZxoYylMkkHJQKoyQ6ABGu5wErLlBUOfVGdPHvb7C38ryzItUSX20x6cVZtYMxg9O1sEUgjZ31rGWhcOiPwmdMxg98UYInBkZfYGqcn.iENF4o3zPERke4G+mhLpV08HGvj+9MfYi0+yt5xS4cXJgd16gQPtms9NUlikjlQl0HfVWHgTCiLFcb3DzJ31bz9I+mO4g+zes7w.sKfdWH5xHVDWDUskMM.XxzYDwhEQ9cLfaid9m9W+ExCkrkxew8+YgLjVnk098jY9YyMTyLW.sBDcKBwYDERMrxygXBSs5FYOE2CdbehZFYhshHcfVp0TCSrKxQL+EDWEx8V1d.oD4H0jHif9a1CqYQlla5rxZYMPrXn.wgi6VH6VQmWNdqH9Rxi1oLkEc8MjYOi9fVdj5hfcgSu6XoXg8jtTAN4.Xlmb.6QjeVXhjwxRceZjCEYd.DA+sQectHlF11sEvai6xMYpfxlBVQzdJw4q9kjRmxm4TdwbfvdR48gWbwmFaoSe1XBu+CFfRJxLwiLe6u4FW8e9yke0HG3oPto3JmsTfuP3yS15O+fBK27Bb3aB+zlk6edyjaq0vCe74ZOCWt1xYKYa1DhCU+39kMtvQIabOdS8KG8.3HC4nSWgyOn4eattyl6sUtO2ljob5ykGOSm9L7ENJQQRRp2+79GARC4ehkzopBgQDs8pkH49ix21qhP4.6NSOGG3rr1O4OWXe3Nu+U8uo14hsNlPsHZjoIXaPuZhPM+zjf6p49mlEEychLF+ZrPbbJaK9o7aK9DncXOsvxCsVimdQ1RGZZQrscexPzhdFwAe4MCGGo.UbzUEoSxLBYyj97bmrL+3z3QTMB8453M+QKQZVMDKPaI8LCfQXzs1cvMBisx6wOlUZwdb3BCeg.CHUgJw3.xr+fe+pSl6y5WJrmEQ5aA4TQ6G8qJ8u7n8J3lMw86oF4ZhD2isHilqozUc7QkvNaZ8ddNDrCLjsyS7QBivySjOTuw108UWO519AI53lNiX7nktqnevuW8y1MHIbxZU2iiXXJwDNAx7rkuISVqCV9lx++7MuDkuQXpe6Jew8cd4JeS4zluoelqm7x2DaGv3Kjt.THspY2mlwqNZXhz+FQEpL5g5azQDmNMFtAgLMNHRMNc7z+HiREujx9YNkLuZ8hnxSWp7rWa1qc0YJO60g+4FBQxqevm70IeT6KHGem8gbobfgoLmm1Hgdw0rx89TUepbXys+xO9e+NzFA4srBnxkJUp6FkyeI..+nwQ9ZmEYr4r+BZ48xKdZzR56689FlVerN8vJs7A6EqIk.OZZFAvWa4MiE3Qy88rnzA+POSyPbgWedFXo+DTlnpIAbJxLObc3bHWp3+XtiJOv2cxz1+yApy+yaXrWSr6qP6H8qX+BtJkSNe0.uEx6US28yz6jCtOK5Vmb.K8aS5vSNv8MPaZqLij6mShz+6+dRNN99CONnQSrhkw1dmvx80uycDfu0c+Oxkhn0oWKUVXeuGJNpzzkDnOgusUTneyLeaP9D88Ly.bOWc.tmYGf64ZCv8b8A3ddmA3d9NIdOzunPuhwo1+v.UVhc3dwfyilW3+BbidfxC
                                    

                                    Screenshot 2021-11-17 at 20.28.16.png

                                    Can't help pressing F5 in the forum...

                                    ustkU 1 Reply Last reply Reply Quote 2
                                    • ustkU
                                      ustk @ustk
                                      last edited by

                                      @Christoph-Hart Just seen the new commits, I'll test this asap :thumbs_up:

                                      Can't help pressing F5 in the forum...

                                      1 Reply Last reply Reply Quote 0
                                      • C
                                        crd @Christoph Hart
                                        last edited by

                                        @christoph-hart

                                        I am having an issue with polyphony with the snippet you shared to modulate a filter cutoff.
                                        Regardless to whether or not I select polyphonic mode or legato with retrigger for the script envelope modulator, I am getting dropped notes. It is mostly happening with block chords.

                                        1 Reply Last reply Reply Quote 0
                                        • C
                                          crd @Christoph Hart
                                          last edited by crd

                                          @christoph-hart said in Has the modulation system been "fixed" ?:

                                          The next step in complexity is to use the native filter module, but add an envelope scriptnode modulator to the frequency modulation, crank up the frequency knob to 20kHz and then create a suitable modulation signal that matches your desired behaviour:

                                          HiseSnippet 2746.3oc6arDaabbcojF4PZGG6DmOFvGlVT.aW3pJJ+IsH.Uz5mspsjnMUbrABhxvcGJNUKmgY+HJ5zBT.2CoEEnGxIeH.s26Ieq4RcQOEzVf.XfdoWbQO0a9Z6kz2L6uYIWRQRKoXWGi.aNu426+ucRYGgI00U3XjK+5saRMxcDTk1bu5yWmv3FKufQtihVg35QcvAflqcShqK0xHWtwuhDPt7SXn9ySlcNhMgaRS.YXbKAyjdcVClWBzxktFy1dIhEccVCsUegRKaJ3yKrE9.9LNZZilDysHaRWkHW1XHibStnEyS3Twi3QcMxMwbBq1UpKZwCV+sXtrp1T4fhFUfCJ.7RBaKIFKgZLeclsU4H510.NzxIbgwC3Bm.sByhECOgabL0D3jcnyOxMVZza7TnWQczaZMzKCTJmFJMQ.JcbTESGVSujYj3ygQKyAgSMBv10Qkf0Zj6gn4EvB3dS0frEcIGXP7FNykld5ygg+5ruSMetoGSvwB9pBO5Z7yb1Bebg7E9YEvcNUsZYNm7ZbD11TmLmVJoc52FOC2uQUpy4vaSr8owKDH+z7TTu4o5hby.pVagB9xbl2ZMo7doHXDxpfe8tKu.wiHEDgvf00j53wjnPtEnaCZ0Ahk7nEnta4IZB50cIy.sEgkuMwKsJjztIbBfGjRtIENbWlWac6p8L8pAEEONpLyyrd133XYfi.mZ+.GCsFeYzh0pQM8RPvIPKc6C.SOTv8W.cYNwtsKMxlKZXwT3vb9.V5TgcWMeZOrTYGPag1JTaIQlN9.ivE6O+5lBeOFeyUHdNrc.bdU+FU.OnlTfcw4TaoQStwjp2AimVNVhDUnbK0fuB9S3jEkiyENYwnI0kIud.kbXz6Q1lphUnXJutZbMgSC7UnbpiTgpXehV7kCZzhlCbzh0L8.TXcGB2sovkVT+j6XtYzmaApmOO8xC.kZURxaIf7zV2IJEAbFcfkI7TGFLN0IshTLEM7wytHm.B5JTfZrVy0DHVIuSWWorusK88XVd0KpuwDvynC9pDGKPtXlx5b79E3r3+2D374.evobvjOBGqvZzzltHeapMDnQgiuJDYoFw21KBZZyoUDbQy5BNKkf9lTvKvlaRSo+jIAcYOOH6Jc81aRsoD2DSrRaU55LNk3.7I5H5qu3PmmSlxq2BEftXoO.7yuwNG+EmXmgp1uJprvtcfh5RLauvXn4QAC5WHBCikbnejOkalvs9jGU5FIq.WJsp4aU5F9D6DtK9jm7K9SywZJrINOsb9cQSdhAT83MPwDE9qe+OGJ.SOYXsEQdZhwaEJepvYwQSiimeWbIgu2B+pRc5R5C+uW4QY6RJpnkygFlBDP6UIRkj9+pTuVBmsTbqveCR0.dgqBI2fFxK1nQBu3x11hVIp6xbkUflWznIKTPCrofgQomc4FBe3RCyQK2XqpznmbIhIblsKSf7q.eJx5Y.UHpyTlwpR8EWRULHvMJSbfpnAKNYALpKIJ0ofjAAjpgj3UkYOtbdI0Od.1fjW2gPtMAaKidhYASqewix07xnZrcN+LaT0V.gmRcYuo1kouH8qI+j124AeUpq51n0qybwsfLqvVzZv1wd0o3pPrNbsHiwBmoE8zvBbaHDd0wLOLAWE9aWAtEEyoTK0lTWKVcsER6DMlXFSiXNAJ37nVazLR.jllNkhl.86oxXkYSX5WaZ9oVUpA14xQfI1XRbYRjxY4sjlOR1bPrc7MIMfZWSbEsNwYSpm5.5Dnr3B3HV1RdXR1mQrVkD1gPAmcPBspREWgwCuOszeI6zArmLqgl5ojNh4.4lXPOh.Uz.vW12Sz.bGnvACsSC0wo8au+8+Cy10oU52TphGsoVkbp0IugWAUQIlfBtTkizAZbmR8615It2wsESO4QQ7xt4XZZYgBiT5UEP.Cn9TDKqdZQlgohTKZrTxhb6wxBMMzTBci9p6dDzxt2RNqIwNhW.mlFO3nHcufF6h6yzrgG792YWLrxx1FgjL2dwzi2eaMuOlNTfSnbj3x1jSrgeR7vvztP41v.Gg+l0UyGQMmS5AhUCbHcZWvMzlf431.Pvyj5DqBmjeUOG.K.OT0bDMh8s0G4dDAObx5m7GeJj0oBjPpa41geviEK+lJX1gTDg5q9yqH6JhFsFREAwbMpzRlwdhiuwzAD1DPNUkOhaGKu6YkQ2so6D0+vEXPXQR6fdC41EDI9wsn6D0okEgbbrfZtUaWRXo8L9RZRnIGHqwO4OmourJaQaEv+CgVZ0U9Bkr7kBK0xnqyduv01iWoZ4YCByGbMWmBRci9DPXeiPODTesIos1c+v+ymc+e9uqzAvcOI5pBaq8YVbdTEeWoau9eO6SjXdTT+DzNnm7k+0eco8jXjk9m28WjRQZdems6Jd7imcOMd7jnq.d2xfclQ5S6oQ2xirqIF9.a26AiRfs7HNbWLKV5K60ztrnEDeXeLZYY.JVilBGOB2C6IvM88TAiDwM0Dy3.bBNb6XENCwvLI9Pt3xrecZwfeEEcykFbBwYoKOVI.t.BiFTPXgcohiDZLmFMdDTBV0MO0gNk1zCKOcXi.jKUDfzN7mb3UeOVodq9pWAP1dCFvb79NkB9RHIcnYfy4VgNcehS2Sz9HpaAJTAru5ejh8IC7zWxPlEb45c3Cbj44InHXne.kV8gQtpNSuAoCyjSjjuVxJx1RI153ag9wP.ILjdL3CHXW3ZDKvdmi+9Xge5lG7BRJciOzgh6Q4ocEJ9CesEdTOSo6uOgwsu2HjpyPe4YlGvu+Gd9+0urzywwl64AjttbSaVyz1MGNnDQ0DCXqxtF55TYvU4K3.p1yIUAjUo0IaScg+sFD1R1qJUojPDTUrV4JaJZQcfPlVzB64U2mgmxdvLPH.OxrbYI7HhcrqkCpWlhaDKzvhZgcdS98Bj0JaGz3pyzpNyrtDPPm59HelyVskkKSz2tpcwxCY5otHtAkvcwEmdqqd2ydNbUHAkpvN.cWFeS0snswPFruqbNRHWLtuzgcKj0PtbJ1VrIwg4UuAyT+LbH7MoEJ7ivpd..+WchrNeetrchBPhBdc5HCG0VhHZUOJ2hKpFiFtT6ZwYTIAExWTmKrikVZc32guVgcIyndqKLfVimnTW18O9Semdng79e12l9SZe7R8NXUtIzQg.Kn4jdN5FatPotqP4QcfM+ke5+9suWi+1rwK66N4mdZ4WjnC+65CAbHpEmY161La34v2kyvulvgQKx2N7C.Ln8aIFvNydwOP9oTFLpInaUCH5m8MmA5e8kVqmne17ftVzfg9oxWOEUDlOzHKCJHIhJMofUxPSCW5C97kOU9+wrOszfddzCZ92iTXq4DhsZPTeYq80231wUBkms+P8mDE9kgwpxKdlFWOJ5FOaifxm2yNOaihuIZMWyYvpWmA9qmmmwA7S06nQOUuJPFSIOUu2PMFKe6Z83s5M1A8a0S+fqPavVWvkb5DfuqKUZkFzC.M3yKHNYN0SlcIfHybOUHd9NJYez2de+9gxMw27P4NHenbyb.+P4fnwY8P4FJdw27P4dA5gxcfDH3f3NZPLcDaD9BVTefREDft4p+e1IOZE4XbQisCaOGZ5ol1P17+MLMkr3uG3vL68LyHrmyOB64Bivdt3HrmKMB64sGg87C56djAWB6crzjC.TdwfNSlK4c6Ltw+CaiObaA
                                          

                                          Is anyone else having issues with polyphony using Christoph's snippet? (If your testing make sure to change the orc from noise to a saw or something.) I am so close yet so far away from having a bipolar mod system....

                                          1 Reply Last reply Reply Quote 0
                                          • C
                                            crd
                                            last edited by

                                            Would anyone mind testing Christoph's snippet to see if polyphony is consistently working for them with it?

                                            d.healeyD 1 Reply Last reply Reply Quote 0
                                            • First post
                                              Last post

                                            56

                                            Online

                                            1.7k

                                            Users

                                            11.7k

                                            Topics

                                            101.8k

                                            Posts