Scriptnode envelope ?
-
I must mention I'm quite new to SN, but as I was messing around I came up with this partial solution, but have no clue how to do a proper envelope for the filter. As it stands, the filter cutoff is modulated via the Gain envelope...
HiseSnippet 1833.3oc6ZsDaaTDFd13LIMtIsE0JpDBUYJWRkJQwNo.UHjchsSaDIstwoOtElt6D6QY2YV1csScKbqf5MtBHA8.RHDH.wsxIxEDbfHUod.INAmaOD3.G3RYdrq2cscbbCPSRU2Kwy+LyNey+2+qY1TxgoiccYN.sgVrgMFnMLrbCpW07UQDJX1B.smCtLwzC6fo08vtdK4p6Pr8nLCLX5F1HWWrAPSKwYDiWan9AxmMxNMxDQ0wgh.fKwH534HVDuPokx8FDSyYPF3EIVQF8j4lUmQyyLY03XKAbbfMReETE74Phg0GDnMPQChGyorGhiKfV+SyLZTtJaUpZ7Wh3RtpIVzHMnL+EoDOCyzPfXwuA4qRLMJEnCbA.MXoPMRBkF4Hv4IFjlxC0LGR1QpvYDUen0W2fW5nva7NBuzc.dfHnqeE53ffYTyD4EGYB5vuCBiFCYyR8vTWhWinz0NJbeFXIhmd0Ni295.d4D0+230m7GAVb4kw5dgfse3LW4wKSe.ET1OrLghkdmRf7rx1otLpNN0YvTriPoltKNk2sWcJs6Ymxyq6wW9EcPTWalajgtw2WFaQVjQEZjvU6ht3Ybvu0BBVNp77LjSG6Ziryv2jcbNkQd0bjlKSYwpQCvetIl39Y0RzybRzfCw8ZhL9NDon+mFo3QQ0tEwc0hf2Cpv6fvoNagxK3GgP96TEo0wlLabby74YTlcUFknG09XArmCoRErSTz2wszTdd7jK4q4TOlqQArNpQaRUCtcIyg4PKp3yx2ws85ZJ32tUtx0b8BcPey6brit1BXSLxMlKWQc17hjscgBRzaTvVjtqalIi.UaxTx.B6tylbf.rpXjc2fcXnzrXufd8fPeC18DJ1C.88k1KnZ6ZAPIdBp.nsYFAecWRXY4gO3qux2Q0L0LWId9.kXf1W.KRqvKeXLcGLGZEbsOG1aUlyJid7BkKc7S7ZijbjjKWipKT4orcv1HG7hrRlnFi5hrrMw7hNvmL0UMY5qTlbc7IRdijCk7cRlJxjjfbZwHFUuJhRwltsOLQUSTOGl4nzZVWE6bxT0Ql0BeescZlA6McHiNKk3cdar+vhsGBDyO6TDTFJsInBE0AShEX07HzJyi3YSuFOiw4pYUlW+mNNu+tkKSqOQMbp1iKZKqOCSMjMdH+wuyzh1Z9clNnSf.GXdEb.fOAIM.7+M+WB1FB4blPpLYXxYP5b0UiRHd0vb+GdcohPSXmwzaZnNfXFoAb.2JTmiqGhIVKg30FTYqB+4YVVBPINro+uuLwPrbPsSxGgxhaAtchHBy7tQSZKXtRHG9YU4mbV796KlCSBtF1F63QvBMrXoUaX4VaPA1GD5ZaxqIeS2lpt++ZusIHrOEB2m.g6CJ0zoAaASrSn92D3OfB9CoTv57zCNwQ+vPK9eGS0yNAvidt2V1DgIGVD4TA6ICWGZhIBXFzRrE4EJ634WdLgdIQzlnoOlGcsVjsQ14XqhcZ4nf7irYa2lzMxV1CaKhHJjcii70m42u9MyVdE7pJ0YrJtkJa0h0bIevEtywd26+sYAQLnDLBwtE6o8GvHD6cCVROQQBI+kO090S9iwHgAfHCiIhyAIUb.uimRA+GSA+T8a9ke0s+0.JHoXPGFh8Ok6RKyLMEfINe77PiFTjEQ2cr1G4NbTqDAU00VVtsj256eEuk68y0y7FerQ4sO5CEOeWK71o9f7uv5e75YU457O0ey0LXNfcufdnfS.Eh5JKye9rUxAhkHzFiVosvt5LG7Xhd1QrndTrhzzZUHOQt.NyZHXNSdbKN6zjmDR2OTbih0vT8Ffya27vEXOklpHEwq01+xm6FkNYt1nzacuNRoSlqCTJeraMk9M2+nO38rVOawqwKt20Ub3PgFMluCHdcYhxWxrKqxlmjihG7x2TNYPUsx6gJUVKlEkuOTL3eH+uKn6X98tWvpBFwpJ4NsucR33ikIyoO83mRdb0nAkZtt+Yi7SM8O714ZODGWA2KtHSHetW1nal0+YwyK1xlIXjw2LAicqCT82exm+WG+OtqzEIA7BfVVtgy8HjqLyZs6RmoiJ+Lq0IW5L8.di5ROf7yfzMO5cEQgdXiaW5vEtWVk4RYKFyqJgVYWDta9w45hpV94L1hfmaZiXkINf3ElDNCOPjv2AzqdwgHFx8ASGCsxaaKloaw0xookmwCgIuLOY3wvlQJ1v+vSwJ0HHYAeBRVP52OqAOHm3Bc6PwG6zVYh8+lVqguJeXXQZ8T9e10dEj8dR11NgZuo9Ct.g815+vQ1JKbwYKf7P9aew8kFI2mlVAbchNVscFBV.6thGy9wy0293XMrP5NrkzUWXsvFXeRIb6Up7+HngfyKZmJMnthcDd1iCrHFjkz0Ee0hWJM.z44jYaLmI1FyYxswbN01XNu71XNux1XNuZWmi3e4gop4wrTeQKtfREkFvZZgGvJA3evc5wRe
-
@dejans said in Scriptnode envelope ?:
m quite new to SN, but as I was messing around I came up with this partial solution, but have no clue how to do a proper envelope for the filter. As it stands, the filter cutoff is modulated via the Gain envelope...
Thats not bad actually , probably better to use a "muted" osc specifically to drive the envelope follower(Or even skip it and use the synth to drive it ) , that way the attack and release on that osc can be used as the Filter envelope AR. Needs some routing but...
This way we are stuck with a monophonic envelope but its something !Thanks for sharing.
EDIT! I can get a Bipolar LFO from Cutoff Point ! Seems to work ... FINALLY !
Some speed problems on the filter I am testing 13 hz and up and it stops doing anything.Now if I could only make this modulation appear for the main interface , wonder if that is possible somehow ?
QUESTIONS/ things to test.
1 . Is it possible to tempo sync the scriptnode oSc/Lfo ?
2 Is it possible to delay the onset of the lfo , maybe using a ramp triggered by a synth ...hmm , that should be possible?
3. Can I add the filter envelope to the lfo signal?If this can be achieved we are moving closer to standard synth operation.
Bipolar filter modulation...
HiseSnippet 2111.3oc6Z0CaabjEdVRMRVzRN9tXb+jh.BmFaDeBjRJ+XbEjVjTNDQxhRTwI.Wguw6Njbg1cmM6Nj1L+Tc2AjtTeWQRaPJRsSUbBP5hABfARYvcEoHHoPoHWw0jadyrj6tbWIQyXYIY3sPhyalY2u488du48lca3wzo99LOj1ra22khzlC2ruCuSkNDSGT8pHsmA2xzhS8nN83Te9M708Lc4NLCJZk9tDeepARSK6UgwqM6TH40tkVgXQbzoghPnqyL0oqYZaxCk1n7qZZYsJwftsocjQub455LmJLKVWA1xhKfbI56PZSuFAFVFLRa5ZFlblWSNQfKj1TqvL52rC6VNpwecSeyaZQgFEQME2Hk3UYVF.hAonJcLsLZLPG3iPZ3FgZjrJMx4vqaZXNTdnl4rxNxGNin5CsL6G7JFEdEFa3ghftoTnS.BlQWKBONx.5HnCSlSLjU2gSc7M48iRWGov82faXx06jNdyjBdED0gMdCH+4w0Z0hpyCA6T3UeiIkoS2PrPZFhZMR3Z9awMXV8c6vbL0WU5SJAzrXUih6i+HBspG8M6RczGnEu6Oe61k2LpIv5fK8v1+gxa1kXMhVeESWlEw6WqEzCf+3TioIzuCObAl+PxteBIuynPMFu1paD3bJ9U9gqghGjw9tkFk69q24Y+tRPLy5gTb42u7qS5Qaw7rUOvvouFss3AEUx1TaWlHNudTxsoMiw6X5zNdj3yUdMFyslCQnFLhdSZzg3S2nUKeJO5soRWeNyd.VjgpaxotUIbBR6ufewkWPb054g+d4Jh+rzFObZmHjP1wiJSg9xLlFcOsjIGRY.mdLORqBwwbUN1u2.DIK+Il8x9i3ffjRs7IGbeF7lGu.aPbySiaZ5Pk4jFDnGZmGhuj+pTGpWhXnir02WOtoh5N1ohtgNW7321i336x7iFq8yZRsM2l4.Zjvm1q4SAigs.UarPkLhWpcIB4KVjoNmlDdWOIGcEaVWmA3u7RK8CkzxdXrY1TOIk3CZ+jB6+9IQSG3oTXbF7UdkpM2JHDm724q4ziZwbowslWm4vT47E0LXKJ2yrcapWTDm5x3JbtnxoJc85EyCnJUmzOgT0fSJYMp.ZQE+JBRIwsanf+86UtoHMfP+PQFK+96tE0hR7i4YUSmEOsyGH09ArMNdLMMlGqVj4k98G2CSGfUEib7FrygklEmDzqOENvf8Dgh8L3.eoSBp18s59rmzptexCGokTekC2TdZZhmoxeQ0L+puQ78.ThQZeLtlSaQlAKn6QEvopu60n7aw714BmuZyFm+h+44yMetVcczA0bdWOpKwitMqgEo+E7I1tVTQ9DzKk+lVL8cZZ9VzKl6syMat2MW9HSRBxUfQbA8NDGGpkexgAID4v8XVWvoq8ModWJeOhU2v6WhimalwSuwbp6Xx2vkFLrXqgAhKfhhxPoCAUnnTLC1h0kKpxcchXGzaK1k3ZcsaJRsSmVIX0JjokAROS0t.zVl5E0wP13WDWAcVDZqEzYwAch.bPEImgPADjz.H32heArMFK3LPpbCvbqRzEpq9MHhDcE9LhTNgvQTuEzGZbNMLihHAfGEpqIzCwDqkEtsCRZUg+JLaa.TPI4A+90MMfGGV6RhQnr31RXm.QUV2O5F0.y0f3QrobpGb+yDyIIqPC6R83lTPCCOZ0BVtzlAv9LXeWKQ5164xT08g0ZaOPXlHHLG1lYnT1w.44h.xgi3QLNmVgySoRWg4qKpTQU3SB8oGcgv9ORrUhuFjw8fVhH7YUmWondHnLAz0gPFvyuQ2aZA42pkEEtMw1Du1TtLvcngGnfFzRbqpKRY1iGjnroSvMLbij0I2dDYms7ZraQ8Fo1OQMZttIjd1xvIWAwIitYZycn2Ro0ik6sz+TlLaBTfFGH+u9mv0mVJIjWHUHub4Tf76c+XPdv8LJjygKrvhKd4KW3EjwTNc3AmFB71sfqLkQiutd2T.dgTA9tkRSWW3ATWOmD24U0Gm.KHk+xrJ+Zey1KJ7bGwY4LXaw+WHnyiDOknm76Hd9Gnef1uN+fcKM99ABdHB271m6St5+4s966C2LCV8vR5HDILFFa20JNijSwHf7i93VOdw.+3l24Y+G+vmWJNCPLLRkA.4OgAd3x.f9ey67swXfowtTxNwofSq1CW1wwSNPSaTghvw.Hpa.FU98ZExRfnnawrg6vJenbktY3qVBd6W6GEtb4DTnX+tGl6MN6T26c99W5uYeuR0tsnxCeenZUPIFyrKJCdJrtnP7QyCaNkajrqm3HcXsYxdwIyfSIK9jUTcLfWFoPofnxfCTLrOevmfi+BPWmDrmvQrmxc7wqdOS3cvqPOYfMg9cb7MVRdc+XIAeuuBtdtQVKCFY70xfwdvqk+2G7Q+2y+SesbsjEuYJ49N99xKd2j9xKlptew6llu7hiAdiWfj7cyMYEH8nK7yuz+Ca7zUuef4xvuKhG539nsVT+8qgVlHKsoUkQAelQfuCZbchCQLVTzYQTTzJOCvXdOe4WTVSqBSDASdDiRPD1LRJFSC4stT7bLFrKgXBRVPVnacCQLN3nkSIqiiZqLX8OZRFotZUYoexdwFNx8Lup.qr4v0b5kO3UaePPUcLEeyCviOQ8PimEmHiBKS2hO1xB6ggGTH9iqK4Wqt7KRCIM.fypORBNZZUo8L0oAeHc3pT+c3L2GMu5fGEOCahtG6F5pWVBX1eJoDQTIG4mW8r30g14Kh5oXGH9cAjsog4Mz0g2R1epHBk9bVbBlyRSvbVdBlyKLAy4Emf47RSvbd48cNv4kektbls5MnJDznl5SpTKr94rn+ODv06EG
Bipolar Filter modulation with delayed onset of LFO... Needs a bit of routing work but a POC.
HiseSnippet 2297.3oc6a0DaiabEdnkm0q0ZuYaiQ+CEApat3ftUPx1aRWzCRqkr2HT60xVNaBPKf6rjijILIGVRJsVIs.E8GfbK4XaAZ60hdn.8VxotHm6BDfsnnGSNzCEI.w8PxgbIYdyPIRJRaSKu9G4t7vtZdyLjey668dy6MjttCSk55xbPJStYWaJRYJbitVdaWYahtEpVUjx2B2T2vi5Ps53Qc81xU0Q21yhoQQK10l35R0PJJYtCLdkIGGIt1qzhDChkJMPDBcOltJcEcScu.o0K+C0MLVlnQ2T2LznWnbMUlUElAqMGaYvEP1D0cHsn2k.CaLLR4RKoo6wbZ3Q33BoL9hLstM1l8.K43umtq98MnPihnF7ajT7xLCM.wfTTks0Mzp2SG3hPJ35AZjLRMxL3U00z6KOPybMQG4BlQX8gxXGD7JFFdERM7PgP23RzwAASqsAwKJx.5vuCclUDjUyxiZ4p60MLcclB2uBtttm51Ii2wR.ubh5jFu9j+z3kZ1jp5E.1wwK+ZCKSmrgXgjLDUpGy07qhqyL5ZuMyRWcYgOo.PShkMJd.9iHzxNzeZapkZOs3C+zcaUd8vl.qBtz8a+MJudahw.Z8E0sYFDmiqEzQveb7TZB80v8Wf4Ngr6GRx6pRTiwqr7Z9Nm7ekq+Zn3gYruWoA4tex67b+mRPLyZATb42p7qR5PaxbLkOvfouBsE+AEVxlTSaFONuZXxsgIi4sstUqnQhmo7JLl8RVDtZPK7Mo91DW5ZMa5R8Beapz10iY1CKhP0M7n1UIdDjxOB+hKjme076B+6spv+m4W6IS6XgDxjNpLA5arTZz8rBlrOkAb547HsRDGwU4b+dCPjrbiL6k8Mw9AIEZ4QGbeU75mu.qebyqfanaQE4j5GnGZmChuj6NTKpSrXnCr026m1TQsScpnqo5we7a5PrbsYtgi092aPM02jYAZjfm1q3RAigM.UajPkLhShcwC4yWjINmFDu1NBN51lr1V8ve44m+iJoj4jdK3+eNk3LoCtGR5.OiDiSfu8KWswF9g3D+N2RVcnFLaZTq4UYVLYNegMC1f54n2pE0ILhSbYbaOOdkSUZ6zIhGPUpJoaLoxAGWxJTNzBK9k4jRraWeAevaVtAOMf.+PdFKe8GtA0fRbi3YsjJKZZmGI09grMNNklFSikKxbB+9y6go8wpjQNeC1ovByhQA85yf8MXGITrWE66KMJnZOvp6yLpUc+vGNRIt9JKtg3zz3OSo+hrYtkesn6AHEiT9K3krZwyLHupCkCmpt12k58.lyNyd8pMpe8W3GLc1oy1rskJnlyY6PsINzMY0MHcm0kXZaP44SPuQt6avT2og9qSegruQ1Iy9yylKzjDfbQXDyptMwxhZ3FeXPBQVdNLiYsZadepyMx0gXzN39E634lHc5MlUMKcu0ro9CKxZnm3BnvnLPZePEHJAyfMXs83U4tJguC5t7cItaayF7T6ToU7WsbYJiAomIaW.ZKR8hZoIZ7E7K+NKBsU76rXuNQ.Nn7jyPHeBRX.3+a9u.1Fi4bFHUrAX1kIpb0U25DdhtbeFdJmP3HpSd09FmWBlQQDGvCB0U35gHhUx.21dIsJweEloI.Jnjb+e+p5ZviCqbC9HjVbavsSfnJq5FdiZf4pSbHlTOpCb+GKhSRFtF1l53oSAML7nkKXwRaB.6SfcsM3oauuKSY2mTqs8AgYBgvrXSllTYGAjyDBj8GwoLNmPhyKKSWg4pxqTQV3SL8oCMeP+mI1JQWCh3dPKdD9LxyqjWODTl.5dPHC34Wu88Mf7aUxfB1lXShSKpmHvcfgGnf50heqpwSY1wyOQYcK+aXvFIqR1c.YWq7JrGPcFn1OdMZ11wjdsxvIWAwICuYZicnOPp0ij6sv+TjLaLTfRCj+8+N35cKEGx4SDxKTNAH+lONBj6cOCC4r3B4matacqB2TDS4JAGbZ.vez+.tFuLJ8558R.3ERD36UJIccgintdJAtyIqONFVPR+kIk90t5sli64NfyxUwl7+OuemmIdJgO42A77OT+.kimevdkRue.mGBwMuwL+067gu9u9.3lIvxGVbGgPgwvXy1FQYjrRFAje1G25hEC7wq+NO2u4i9akBy.WBXfhWXnfrmyofOa1e7a8de5+tzfKJv4OpiAQSKQVAj+TGimrrhbJ+yAbLrojchRAWQlZkniymbfhRbKqo.PTSCLpb6zLfk.Qg24eM69EjR8j5l9uwO3kRdPT3BkiQg7zPdRlxBOgje1+8k9UlOpzR6xKHz0ENDAPIFwrKLCdYrpAkLX5wSIciDc8TGoSp832ONYBbBEWEuP2yA7x.0u5GUFbfhf8o8+xnbyCcMJXOgS+1kmld06acH89xFRbKyz3aLu35wQpMQVbyyOvZo2HitV5M1Ces74+w+7mc8+26KVKYvqOXsT4NJ0RM2Ci6KOWh594dXR9xykB7FstUwqLc3pa8zK7yWz8OU+Yq9Xeyk9etJOww8Y6QDDemLHr3biPgMyDB9yfo9uUysZxLL.85.aJ+swZcsHl5pt4iMzQhfpicrr13Q2Rs0FerGti8M+sU9NO5OHCpdY+2VX7Hpnyufdxdubq.Tu.Da94YkC6XbE9tu6tkF0fzMpA00jYpGz6SMhNx7QzPsUA0n3MMFci0O4WdLsiPu8QHT6aeDC0lE2+a4Yfm5unbz7Rgh5l+BU4d9GsSj585kw9woVuSypLNvZ8RWiHtUWx2nfmyNjpIJs47FfXLtP9hnvnU7lLibB9S+tkUTpv3lEhWTp.DAMiPQDMs4Slh3SPvBhiqulF2vAdA4IPbm0rEr9GjmRb0JOTqQ6EaJLM8sxlBujUmb9efdGFTa0Dt9WGgGerS0McVb7BvMzsKdgkE1GCO3rruntjekZhuqdjv..9hCBsqghRUZGcUp+eN.7cwc2wiYe57APbZ7LLIpNrsTkexGfY+kER3QkrD+QhMIdUncthnNR1AheW.YpqoukpJ7s978JhPIOm4Fh4L+PLmEFh4bygXNu3PLmWZHly2+.mC7V+ucaOlo76.iKn9Rx+vPTBRAIC5KAz5FMmM
Improved it a bit ....
HiseSnippet 2792.3oc6bsDaabbFdVRMxVzRN1IpstAoErt4fCjCgHkjsE5ARIQIaESYRoUxIEs.pqVNTZqVtylcWRIlzBDf1C9Vxw1Bj1qE8POmbpBM.8jMP.bNzioEnGJxEmCIG5kz4wRtyvckzpmlJ1KLj47Zmu+my++vYXEGrNx0E6.TFX4V1HfxfP0VVdaLyFZFVf4KBTdYXMCSOjCxpoGx0aUWcGCaOKbUDX5V1Zttnp.Ekj2l1ekA5CvddR9o0L0rzQAUA.2GaniJYT2vKn1JEtqgo4bZUQKaTWn2iWXdcr0LXSbCB1RBGEXqouo15n6oQ6VBHPo+YqZ3gcT8zH3Bnz2z3psT2.ukEu+22v0XMSDsPVfJ4EwqdNrYUJhoeFLyFFlUqzlG3BHuzJAbjjbNxvvELpZzo9.NykXMjNXDh7CkD6E7xJBuQiDdYi.d.Az0GGcDPfq1vTySFYTwgeCFXKIjMukGxx0vqkn35oJbuLrhgm9FQi2DQfWhf5jFu9B+gfyVqFR2K.r8Am6sN4kzJJUBYZ9hvJXyV1afsLzmiYSx.z.Pdgr6g8H.LmC5safrzayE24q1d8BKJpBr.0jtS4qTXwFZlBb8q.FcpoMrwlZNwRCJ4tyFDsGifz6KlpMeWXGhJ8QQWOY7DX6iP5hbjBgklqruQH4So6f6r6mR8Sx2sL5W7Q+v+Sdpuw4CDkEd+BuoVSTMrSc9DFL7Rn0ISjXMKipaiI9y0E0DTqiwdaXXstrG2gKTBism0RiP5UEeIU1PyEUtVMWjm3qYlFtd35swBykrpGxtnlmFP4mAuw3YHO0Fg92Img7mwJe7TFb7onkHlJZuDSR1QjQko83dT4HVx7nmeM.pGqzmYVy56C8cFx3xmcv8EgK1aAVe+lW.pZXgXwd56bmVNM0+R5airPNg7g10RbeZbC4zN1gbVV2iL8K6nY4ZicE8092TQ0MVFaQ4HAy1JtHpxvRTVqjqRrlSjMQb4SHxHGiplWCGlLZp53FVswegwF6KxqjL1xjCPnu887PeOFCG3E3X7bvotSQ0k7cww9b5YsZhLw1HYs4EvVXdrchpAKg7bLVecjiHhijLlxyijgzLMbZJYATDoq0JTs7NGtlRHBzDq9NDgRnWWmJ97GTPkDFPfcHIhku2NKgLQZtRVVypikCu73LdQXLUMFBxIxzL69dc2z9XkKQ5sA6fPlZwYA95K.8UXOSvXuHz2V5r.qcOyhO4Ysr3Odxp3x94nAU2PyFQlR5beAdozy8Vx4D56k9e.yNNK4Igmlkyp+KKM4cvZKNwLrxpSr08lr4MKU5V7xKZ2BOYywVqzM4kmr3baO4czu6R9sO1spkcxJ2Usk+3WS8FEGo4DK632+x07VbjJKbW0avK+FSd2kFYY22Xkfwe+QxbyxY7Kqu0h+zQpMwJV9iWNYslkASan4VBUSJmQZcKYr9FRUdGREUHLAw0KJg2RppG73BxqeTnP4lHGWs51ljLYEsADhJbmG9vQKrDpZC4fBmpgGd8t1dDVLhyaY2PBZEcLjW2bAisk1jSlziu8KRQBdjiPKRE6kvM7HT6BZjXBH3.duF0UIAqpiH50VVHSxDAURPC3jWdTZYVvjHqprBeC4wuwrzxJ9MlsciQXrmBpx1xWes2A8K1s5aRd0.k+BbVq0Ig0lQ2AQn9ht12C4sE1Yyqc0hpUt5q8SFJ0Pop0vRm5iHssCxVyAsLthoVqqwDnHRvvnqmdMSr9lpFuC50R8toFH0uNUZgAw.4zzdbMcehOb2nQya44fMulUi5qgbtd5lZlMBdeg1C4CsQ+ohngRLHRl..fOCkEyo+mIehJcfPBOlVKyZI0bZ5DxqUEMRVUDGzj7anq8gbxn2wSX+zQjEP.b2PsDg6JUsRR5qscFRb7OCtdcJnn6+i+meSipzoCpbcRO3ZHKQjqzkvVPxJmxoqn4nUGwseTRH4QNIgCaib7LPTNLcp4DLizNGE6mC5Rr+8.6JYxa9jh11EDljivySQ34gLNcVv9HIdZv92E3mP.9of0wU4HTh.FVf.5ziSVZXOUJ5W.yCAwt5jL74aXPH9tCJSP68.7cVVizRjHiRx2O+UbQzzqA2m5shN+UZrlIMuPkjffvqVVyYcjGKfm.aHpNY6RjW07jTMc77Svzvx+EJrdl11cU2knq8hb5ZOS.fUrsCU6kJP2wWpKZwEEU2DsEmqKkyJyUCaQ7Pn.DGH+G98zmONeXHmIRHOdgHfLINBQH29cJB4TvQyjK2jSN5D9AqErq7cgkuLOH975mDAvGMRf+j7QwqG8.xqGjg6z78UJDV.b6kA313tFqmiXE2kwxEg0I+eF+FepXoHFcbWV96qcfxQyN3I4iuc.QNHHad2g+q29e8N+18P1bNHexBaHH3FCBq2vTVhjhKQn02Crdw2pj.+fOaJx+9PICi9oRfr8ThfiKChT83hiu9Z+72+u+U+y7cSTT5V1HQqZ0HkPz5etQxwqT4QOj97Y4Ek.8CsQZaJKBt.OLKVC8lx.EkvZVCRAw7UojjayZYCDSz5DCCnrcmDiQdblSmu1b52r+dICGuPHYHIljiy3WHhoe0+8l+l5OJ+raSRt10ktSbTtnjdmbAAmdjDVLQZcG37fbiJVSOsc7k7YhHA1M4y4fQjNVuQ9jwO4c+kWYlYRDxP9G1P2Lj1NyonAi+Jrml9A10zXZefhhbU13XzLF64wRo1vWj3G2EsztmxzR69t+zx+6O9m+5q9keJiVRBWDzEDtbgCPpX41IrQdtH4841IJi7bw.uxo8x1S5Pn.za4W5aZ8mp7REeru5RmSIV.taOLvY4cXH7xcT+k4Ni5OseARYXHx+fErZMroIkG2k20WAVskkVcCc2Lg55YNmsINRZgDudwVKjz282fehe2L+nG8gbmsm2+KuOrmVPuKnGn820bDnt6jhy0qlT7ocrguZgS8zuRHINF.VEYp0ZUytiix0ayLsa5Yrst6fHTd0HVfA.1KgRQJSEDZJEEJCRhhc6UYb+t7.eIdlwcZ94dcOZNvjiYgIZXmTliYGufO3.nR8AGvXVRA6bVT6ZVeuBxY9Q2Pkw5s1pkCltz9rsKrsaUZaWZ6C7nrkKml4zuma4hbV7rsRomcSVR7r2lrrqEj9JU622j0vzilQMHto1G.YHbzLYkVhgcTSDGv681ebAEkYvD4L6jrvXvAEELZ3a.dj1Lj9yjBruSy4qRTDnm9tHrjNCX93y2GDNqUyz9GH98Cp7cF3SN.SenLciqLfF46yNx.1xro8nKXE2.xNDxf1CMdxff3f6RNvCW6jSN7fO4PGs4qOyq7E+6a7xwTNrx7rqVGmAPOGXB9mUTJhZZniZeZSKhb2zCaepehAGt8c4gdscBtKOeGX6qI3tbUdRbZeUdxJ9l6psbx22AuFVxcmWkTunj2bDxKq3NW0tRgdd9BUzrjdYjx410CXJvOHGUDgZpVN3TKId6LaX5hXqvK7d+bgpyIVc2mKUX7NvixWoFg9uOWhY3yuRQGiWonAZiQUC5ojs80HhgwWjXyWSqgo2I4kKR7xBG5R9Px51vhD45I287QIlxqqHdOeR+sieEDR9L4uBBw2Bk32rGPReZrb6owbTWS2AupN+vySM8NOqFBcaw94WY.3BzxoyBZxCFhlSynf5DG3qpqS0NdcB+I5wj6PLlwNDiY7CwXl3PLlabHFyMODi4V64XnqcRuWK045+jJpLK+mhAkfMJII3++J9ghL
-
@Lunacy-Audio Could you send me a snippet of your solution , never really understood it :P
-
@lalalandsynth I'm not sure I really understand it either haha.
Let me see if I can whip something together. What in particular are you looking for? I ended up just going with the baked in unipolar modulation. It's fine, but a little clunky from a user perspective.
-
@Lunacy-Audio its ok , bipolar is working now , for a filter at least.
Bipolar LFO and Positive going Envelope on filter.
HiseSnippet 3110.3oc6b0DaabbEdWQM1lzRN1IJstAAArt9fCjCAIkjsE5AtRhhwJlxhRTxIEM.pq1cH0Vsb2s6tjxzoEn.sEv2b.5k9SZ50hVfh1a1mhQCP.JfMP.7kdztWJBbO3VflCsGRme1k6rKWJQQ82pe1CRb9am2ady6Meu2ryTxTWBZYoaxwGewlFPN9A.kapYu5TqJpnwMSdN9WCTQQ0FZB0ZXCsrW1RxTwvVSWFxMYSCQKKnLGOer2FWe938yQddQtIEUE0jfdYwwcKcEIXQkZJ1d4VR3FJppEDkgKpTio1iJLijt1T5p50QzVLPZNCQo0DqBuoHtZ8A33OwzxJ15lksEQzEGe+SpK2r7p5qqQq+sTrTVQEhSjgqL5EQytftpLlhw+lapUUTkK4NFXwgdok7FQhQGQFBLqhrRq78FYNKofjdsfc7fuuMh7xvRdoCk7xDB4wwPc8SoNDQnKWWUz1OkgEGNEnnq4ixlQyFpYoX2jUbsuRtmCTRwVZ0vo29BgdQBpca50Q3OHX5JUfR1dDa+fBuWuJo2BSD4K0lp4KCJoq1zXUcMEoBDcRBAEGPSjYCzG43JXB+A0gZRtihBI9Sejv7rSAlEqR2J84ElutnJyn944ROwjJF5phlAkHOc96+weRvggXc2vPHrd+c4zluFnESkb6LWu2oTVgzYnTJ.TrvbNJgnekrEcmYylT+zbAkQIe+68uygsMNimnT3dBuqXCXEcyZzNziuJBqh5H1bVDVyPGYOWhclP4Z551qpnU0uE2gDJpqaLslHh0kYeIkVUzBNWkJVPa1WyT0sr0q4RKDSxksgF4EsE43+tfqLZJzSkgw+c7oP+Yj41YRysyI95qKmn8JDIYKQFVlFwsnRoXepGQ90.vVrRdfYMquAvwXHYT9fCceFv7QKh0wt4oAkUzfDrmNF2woShsuj7sgZPy1rgFXItOuagbZz0PNmSxF08KZJpYYnawZq8SJCqorntFdDwq2VxBhmLr.dn0moRcQyPK5E4JfXxPaSYQ65lDYzD0zqq4R+BiLxyywGa2.wQ+GC8cyVOIc2CG3knz3IASb87kWvwDG42ImVqATU2.5e17r5Z5TrcrSCV.ZapTsJzjkhCkMlv1F4gzT0Ma3SCHOTRrYa4Rqb64TDhHM1ruNRnz1qqUFO8tBkQv.7zC+d2+M95ObAnJTzxml0zR59gWtShBCzkSMFDPYxjD89ntYZGZkJQh1D6..xzhCBiquDvYB6AhA1y.bzkNHLztgdwG6noW7rdXbNG+0.kWUz.h5dLcbZZpjEdO+9G5Xw9y.YFk3HEySi4xH88KN900EmeroHoKO152b7FWsXwqQSOuQS8waLxJEuJM834Kb6wutzMVvo7QtVkLiW5Fka5z9UJek7C2XrEMcp+bUrme3RydixWgl9cF+FKL7hVuyRds+VCm5pykxIsz5y+cFtxXKo4zd+Nt0XNtIUDsJBq3y+QbdKnTcUeYdcTFkPCBrqcTTeceYc2mH3esDAg4Z.MsDqYnh7pkUefAg3CeziRKr.Ttte.hST2VuZfPkPvKNilQcejVdSE+qgNqxs8EvShziFJFenB21n0BcR9B50sQb6rhH7AH5.by50Ji.tJAQyw0zfpnNBv2GF7IMcZbZBvRnlLIwWgdbJLCNMuSgYbKLDE+Dfxjv+5L6c.mjAm9FilMG+uGLsVUDD2TRlPD2m2x3lP600MW6RWHe4RW3M+1ClXvDUpqIgsWjzvDZHZBWTujpXyKQDnPDvX3kSthptzZkUtC7MS7AIhm3GkHISiHD4j3ZbIIGlu8pgQ1qYapqdIs50VAZd4jMDUq689ZKdx8Ldj8DQClYfHuB33bFPI3Oc9M5WXoC.fFiw4RzVRTPTBwdMKIh7vBYrF4qCdcPnYJoVVEOAtEY3PDbPRsHZz0W17wvuVWuknz+T50pgIJbrfb986pHi6N.+kQ0fNCYAjbEub1r9zxwizkDMEqAo5O784y5bLzHrAzzVAhGgwcMkgIr1Iwz9IAVH8eatNxlzh2s3sNPg8Sov3T7mtgL.GhvMQbreHCbM4zww69nbyovbSBPMcYJs5iUFhgUZUicWtYCo4SwPyCBzsjPN+SikPaR.SXJux2Wj.94AhCk3THPSwng5eIKH1yatagMdg6+R0WQE6xHeLNOjWKJZVEZSvB4oRgmh5lBOiD4EposiumJZNuPlk2Ducf7NKdoXnYfvovwsjgQa4dVAbvfwVrYWir7Zv0oi59bmkX4grldaTAW2Px+peI94A4ZmjSEJIOpPHjLBVAKI69NYI4Dfzoxlc7wSOlC1Mu.1GfVdUAtter9EgP3oCkveQtvFqSuEGqGfP2IogbpMZgiwhUBfkR0rHs3.JKmATC8+TNEtunovBVNfl+lpGvu8zCdQttWO.IGXjMevP+w29Y24mtAxlSBncV6JBLlw.fZ0U8KQRPkH372+sac3RBP0n+q9TLNAVBjIRIB1oTHRDwEGe4kd+68W9O+sbAYJLe6WIQTVNTIDN+iUR1YkJ+iO5+8yG6W+YATRLfhq4WDbZJLKRAQesDd91mkM.lflQFydVMpjwSjgyiERvbFs7YFZSGnZs653O.fMRdNpPaxSD9jcRrLw6+w+vu3p+jZON2z2F42skENfc3QTeyAYUnhCLgRPbPPB.b1j5uaJ2hif.mGDLgr7h5kUppIp1B7beaEvyQXswDfBPn7J3czoUud8mcGT69hbrRvSRTHyFszHOVKby0BCQkjXg8T.IUnXPWYGftLGon8airwNRfMuSlLQxGb3OxDEC1SGBWxI7YuPRUwHSP6ENytTLNFE0N7Dp+472+M9YO+YAPQgvqNRjBH6QEeuC.pMA8KqC574arbEcUULw3W175.4lZh0TjrR0dM2usF2wH7toxs91VxMg608wNDU2MeYyw9ES8Me7u4w4nVYc9bV76x9CpuUBB2dMQG2cq88n5QGA8HoJvtBBBdCTSNXz2bQbSJKBB2d.vT5ndlryas3uVtOrEPcyp4QQulIZgd0SgJp3YYr8aLsLQIuacszAG6HQLbrGUwtlfJSbNiIQPrqc0RZA1jXGvTDMKerzfNGvMqTnxNv4uDn6Cc6do6rcb+wbWsLzv21M5OiPddhu8L6wOB+7sBvKt0zOu3V2MmW9ue7u6Kuv+5yI7RLv7bAHgysUfWj8gsqumMzw9rOLL88rcA85e+TIe6SsQEbQKSTeUyeaoWI+Sbltz5jI4Q2tMi6f7VWGHpMIvGNm7PUwlQcaqabLBHLyPs6OTlCPNDcn1MH22yAP2fPlsaa+VyFU2u085fbdQg8bfhWTfUbDGHiMesrZPjTV1qkxsniXQlZqHTtXHKwvwsQBE5xEc5qBIN0o6JJ2dYxne.Kvmk5jbqhO1p61y.leTKDQC47YrCa3k6C2BSo9vsHpkDfVm.x.85O1mpNMpKiDY2E+Xa6XsP9Rd7EqEWafam8NbuzA+tHLKwc2OGbrTNd2BiNQboiI36mg2NgiJqhpM1mZtt04dORF.RmJiukXHGpA2FTsB54A+AAdduH2Rr7xDHWOkF52VUn5Ln5SjBj.ANiLZh.9LeEhlTzU8ITV1Ya3NrxyAmqM.XZsFIcN54aFoRiGxmtE59.634eNWv4c7cXdGFs+QGY.AZQRa7hzcKHzdPFz5fp0Ux.Or+AjCTHp6dxg69o8LB62ZpW+4+8q7Z8nb3b.2SreRwtSgXqOWnsuaqtUXzZS0XEFLePXGBzKVZFxkJDcL.ep2XvHvymG1PQB5d1ZyCsVyV2XO+7QNj6sXB9BKw6VL4UAtWPRc3RLou85KwjLru4.kk0+M8fccM+UmlkuZgYuBH1KCa7ScyjolmRnjnluWFJc1NdbZ4b.ZWFh3F447NTVr2KU0UsfDTlYXuDs7xNKa1AOEtft63c5+xDgo9a7wy02cRwwWlJa2KSk3tzXYE7YB10bLgFeYjNeEw5p16lWqJrWSZsc8lbQghJZHum18tgS36R404YugSRd339e7vzMGwtgFJxtYDPRuWrb6dQeTSTxTeYI5UE.43CSxAw2ZjKd13fYwoSlgqAELD1u5zb0PFvWVRBO63sPiOg2lr8PaFoGZyn8PaFqGZyU5g1b0dnMWaCaCdsS7s3QM57eTFklldITxy7QQw8+kfNhzB
Invert envelope added.
HiseSnippet 3129.3oc6b0DababElTqFKq0RN1IpsNAAAac8AGHmEZ2Ux1B8vRIsRVJdk0JsRNInAPkhbVIVwkjkj6JuIs.EHs.9lyw1h1zqEEEA8nyIazf1S1.A0GZO5zaENGTKPygdIc9gb4LbojV8O0O7fzN+w46Mu48l26MblR1lJPGGSaAwtmugETPrGP4FFtqL1JxZFBSUPP70.Uzzcg1Pi5tPG2EcTr0rbMLUgBi1vR1wApJHJl3V35K1cmBjm0yOprtrgBLHKAg6Zpo.KpUUyMH2RR2VSWeBYU37ZUYp8fRSoXZLlotYMD1R.FPvRVYU4kg2QFWsN.BhmYbUMWS6xtxHbIH14nlpMJuh4ZFz5eWMGskzg3DYDJidQzrmvTWEiX7uEFaEMc0R9iANBnWZofQjDzQj9.Sqop0L+fQlKPJHUPKXGOD6XyfWFV3MPjvKSDvSfAccRQGBDlp0zkc4QFlc3UfloAGxlxvEZ3n41fkccnB2KBJo4prRz3siHvKhQseiWOleufwqTAp3F.1NAS7t6TN81XhnXoVDMeYPIS8FVqXZnoLAQlj.ntAzDY1D4QAgIrg+3ZPCE+QQoj+oeizrrSAlFKR2L8kjlslrNyn9kDFXjQ0rL0ksCyQd9rO7SdT3ggDs2vPDjdms4zluMnIQkZ2LWemiTVlz4oHE.JNwLdBgnekpItyrUSped9v7nTu+C9O4w5FmJfUJ8.o2QtNrhocUZGFPWEgKi5H1blGV0xDoOWgclP4plltqnYrLuF29jJZZZMtgLhzUYeIkVQ1ANSkJNPW1WyX0bbMq5iEhJ4xtPqBxtxBh+.v0GLM5oR+3+N7Xn+jal8lzB6cruNZyIZuBgS1jkg4owbMpTDyIdD6WC.qwJ0Ql0rdUfmxPxn7QGbedvrwKv5o27bfxZFPhsmdJ2woSg0uj5VPCncK5PCsD2WztlbZ01lbNihKp6m2V1vwxzgUW6iJCqpMuoAdDIn2VvAhmLLGdnkSUoorcjEsd9IPDYjsorraMaBOZjpl0L7wuTtbuHuXh8CKN57TSe2p0SFn8MG3knXrKvHSVn7bdp3H+N03F0g5lVP9YySaZXRssicZvbPWaskWFZyh3HIiQbcQdHMVM65bR.EfJxMZIWZkaMmhPDzXydRDSokWWyLd98kJiLCHPN7G9v236734f5PYGNIqwUL4MubuzJLPaN0nW.kHSQj6i6po8vJkiDuAaO.xzhiBiquDvaB6QhA1yC7jkNJLztodwm3joW7rdXbQO+0.kWQ1Bh5dLNNGMUpIdWd+C8zX+WAYFj3HEyS8Yxn7iJN7jlxyNzXjzkGZs6Lb8aTr3Moom0pg4v0ysTwaPSObgIt2vSpb647JO2MqjY3R2tbCu1uT4qWn+5CMusW8moh6r8WZ5aW95zzu8v2dt9m24sWHn82s+z2XlzdoUVa12q+JCsfgW64cbq9LBipI6TDVgy+Qbdyos7JbYNIJiRnAA10NJZtFWV2+YR7qkHIMScnsibUKcjWsrxCLVH93m7jAjlCpVi2.wQp4ZtbnPkPrWbJCqZbPqfsF+ZnSqcOt.dR3dzPwvYU3t1ZsHmjOmYMWD0NsLx9.DN.2oV0xHCWUfn43FFPcTGAD6.a7IM8.3zDCKgFpjDeC5wqvL3zhdElwuvHD7SBJSB+q2r2d7RFd5aBZ1Bh+Av3FKiLwMshMDQ8EbrtCzcMS6Uu5kKTtzkeyueuI6MYkZFJX8EorrgVx1v4MKoK23pDFJDYXL7ZoVR2TY0xZe.7MS9gI6N4OMYJlFQ.4n3ZbUEOhu0pgsr2v01T+pF0ptDz9ZopKqWK380R7j2w1ibfvZvDCD4Ufff2.Jw9Suei9El6..nwXbtDokjSHqfHuFkjQdXgTVi70AuNHzNsRSshmA2hLBH.GFpEQitbYKl.+Z88Vhh+wLqVECJbrf7986noh6Nf30P0fNCYNDeEub1zbR43Q5Rx1xUgT4GwN3zNm.MBaAsc0f3QXbWSIXBo0EF6cAbPx+tBaHYRKd+h11.D1IEgcSs+zOjA3PDtEriCCdfuJmMb7tCJ0bVL0jDT0TkhUNRoOFRoYM1eolMEymkAy8BLcTPN+SikPKb.aX5fxOT3.7z.wgRbJjQSIng5eAGH1yag6hUdg6+R0VRG6xnXBg.KulW1dYnKwVn.QJ7TT+T3YjHuPsc878Tyv6Exr7l78Bk2EvKECsCENEAgErrZI2KHgCFLViM6ZjkWEtFcTmycVhlGxZ5sfBg1Ax+5eE94yx2JjSGIjGTJBHiLqfEx9uSVHmDLP5rYGd3AFxy1sf.12ree5SvOeUdg1erd8H.9.QB70yG0X8.ayw5dH3NEMjSsfEAFMVIANZKmEIEGRX47fpn+m1qvCEIEVikCI4ukxAh6N4f0y29xAH9.Cu4C66Su0W9A+7Mg2zEf1YsJHvnFC.pVSmmijjxQv4e3q25XMGnap5JzHclXEKXuRfHYLmc70W88eve9+9OxGlnvzMuPhrpZjbHb9mJjr2xU9Hk+3e68V8KyyKjXAkWkmEbNpYVjBh+RIhhsNKqGLflRESdN0qjIfkgyi0jfYrZ5yLzkNP0b20we..aF+bPoV3mH6S1KskAYoxO4eciOp5SyO98P9c63fCXGdDkaNHq.U2.anBDGDjPFNaS82MsewwPCm6ELhp57lk0V1PVuowycrcLdNFKMlDLADptDdGcZ1q31z2m92yyxA6hHPlMdIQdpT3VKEFgHIQC6YAJ5P4vtx1CcYNRQG1JYSbhvxvMRkIh+fC+Ql3Xvd1fvkzEm9BEcMqLg0W3M6Ry5Tqn1imP8Uy9v23W7hvVQgrWMWrxP1SJ9dGxn1jzurNn2muwhUL00wfgm275.0FFxU0TbR2ZMOr0FugQ3cK4acrq3aROn8icHpta8xlC8KG669ze6SyS0x584rvGPvOqljP7Ezc6u09AndvbnGEcI1UPHAZH2ow54.cE80yyyBbfFpgC.puSOjxhgd7zCXLSTOS17ylzWSO31FN9vp7i5.Ql3kCDA5zhKN2m3v1sBlMpnc8t2yUhbwLWINo59PRJOw6X9DCcensrpHz9z6YOKQxhij506LF5jFU1QNWVAsezyOHinvFtEk9FrDYDzaG4mbjmmwsskz8876EhV7qIOs3W2slV9eexu+qu7+9KHzRBvrBgfvE2NV3k8wsJumMxw9rONJ48rsAd42RaxmeVKnPHdoh5aZ76J8JEdl2zklGNr.b62Lgixe8.gBbVR74ip.TWtQbW25FnQ8LLDSes5RZliP9jdr1ST+2yQPOQQpsaYKuyFW2x6C53LeEoCbCEuhDK6nafJV80h5gsjxwc0z9EcBK3faGlxUhXIFAgMioPWtXS+rP5AYG68VjL5GRC7EnNI2r3S05t6Tfwa0Bg0PNhL6wJdE93swTpOdaZ0RRPyCgZnd8mwIpSi5RtX6GRQhccrVHeLUbwZwWG3tY6aOHcvuMByR29aoFNVJmtgswmHtrgI37r+LdhrZ5tXepEZWm6CfL.LP5LbKwPNWIraZwqN4eQRTLHxsDMuLAxMPng94sEoLCp9Dt.IPfSohlHfO1cQHIEeEehjj81Iziqzb34Z8.F2ndJuS++VAUZ7P97sQ22xqK77NwMXdG1Z+SN7.hoEobwKR2tFgtuyCBr8ODefZh59Ge39e9N1B62ZrW+E+yq+Z6P9vEA9WZBojaOAhs+bgV9z4ZWlQyMUikYv7M4cLTt3h.JVS4GNo8S9QyS2dawO71w78SMTq+nCONwBSQtgsnTO9HfxXslnXAXcMEn+AMu.zYUWSqC7CKbe9WoO3aumfqzmuEv+1BaCtQe53f9F8IC6aNTYY4u1SbqYvWcZVb0BSdSfHuLrQx1OSlZdVoRxFbuLT5ra3YKWvykmxPD0nNSvITj8RZqltCjXueF1aTtfryxlc3ijNn8Nqy72rNL0eyOq5bWPKmdyBsauYg51Gik0vGPd+EFIX7kQx7Ujqo6tedGCwdmA1xc8yUjJpYf7ic+659QrM4WWh859I0wiKC0iSWiJ6GRnH8lw.N8AwxsGD8QUYEayEUn2aFjyROIGDcaPtEl6FLMNcpLB0oFCgivw.BUQJvWTQAO63sPiOQ2lr6f1jaGzlA2AsYncPat9NnM2XGzlatosAu1I9JsoJc9OJiRiSuQVEY97zD9+.uMJtz
I am going to try and build a proper analog synth modulation system , will post here as it develops.
Hmm. found a problem...
When the cutoff is low , and the amount is high the lfo "folds back" and the negative portion goes positive.
Also happens when its when its maxed out in the other direction. No idea why at the moment.
For this purpose i cannot use Sig2Mod or I am back to the default behaviour.Not finding a solution for this... hehe, it should not be so hard to get this to work in the right way .
Anyone have ideas for this ?
This can be somewhat fixed by limiting the LFO amount , I think its possible to hit a sweet spot... -
Amount set to minimize lfo foldback.
HiseSnippet 3282.3oc6c07aiabEmzRiskV6M6ltsMEHMUHnG1.uQPTxeIzCV6ZYm0YkWKaZuIEs.aoIGYyXJRtjTxVsn8V.xsbn.8TQA50dpnmVflhDjCIW1BTf7OvdeOzfdrWZmOHEGRIYQKKaS4HcvVyGjy68l26M+dONbTUKCYnssgEGepcaYB43mAH1R24vUOTRUmaixb7SC1EZ6jYdtGzxTx1Fpvwym38vsxmJIG4y2txCjzjzkg9Uww8DCUYXE05pN90VsziT0zVWRAtqZcldOeoMjMzW0PynAhRR.xwYJIejzAvGKg61D.N9IWSQ0wvRzQxAZywm7AFJsDOz3XcZ+ehps59ZPbAANQzMhV85FZJXJFWK2pGppoT0iis4P2zp97eBJ+eGvlpJpsq2WNbKRCY7uBV4A+DmF4IvRd4hL4wwPcIoTGhHLTZnI4DjxvSGtMnZnGfx1P2Apaq5zhc55JkbuMnppi7gcmdmnKzKZh5hldcm7mErVsZPYGehMIX8Ob3NSmqaJh7U6vP70AUMzZYdngtp75pZNPKBAkBPKHbJ1ibbqaAeVCntrmTrT5+5erz1rp.HwOiA3aTZ6FRZAk5kdfpogljU3YjWt8y+SedXwPhdKFXsG6BqmLhpM+.PalJy4QWOQzlv5yjzMoTJ.TY8sbMBQeKSa5VneJ0ubkvyQY9ke5+YEruwM7mJK8ok9.olvZFV0oCnOeUAd.ZfXqYWXcSCj2aYVMAw5FFNGppePPOt2oTECCy0zkPrtB6Mo5gR1vspUyF5vdaVsgsiQcOZg3RVzAZVVxQhi+W.Vb9rnO0lC+2hqh9SgsFNk4FdJZSDQEsuGYlr8TFdNMl6QkRwALOh8qAf8XkYjYMqeDv0YHQJO5P22Drc7hXc8adCfnpNjfzz04NtbFr+kLuGTGZ0gOzPKw8uhJjSyHC4bKYGzvuqkjtsogMqu1OWDVWcWCcrDwez1yFhUF1AKZC3pzPxpqM8sqrNhI650HJ4zvhLGc+5FMz8n+REJ7pU3SD44Dgni3H4XnuCQ3.uFkFmBb+GVVbGWWbjumYM8lPMCSXPs4MMzMnX6XUC1A5XodvAPKVJtqrw8cbPQHsZCqlAr.JCkkZ0QszN2YMUfHRis5GhlT5310thW9IkDQv.7sC+UO+s9gewNPMnjc.Kq0jMBBu7LI16yx3fHpZLKfxjYH18wc2ztzJcFIdSry.HpEiBx0WC3pvNRHXuIv0VZTPzdpQwmXTKJ9AeU.1nJtsaLZ.wCkLgngDO12fVJy5eXvXBc8R+U.g4IAOw7o4VBxeTkhOzPZ6EVkTVbgiebwlKUoxxzxaa1xnXyB6WYIZ4hkW+jhOT9Q631dgkqITr5iDa4d86KtX44ZtvtVt8eqZNaOW0Mej3hzxuewGsyb6Z+964e8OYtrKsUV2xxGu8OetZKrmt60GLXslaw8.UI6JvZAhYDW2NpGbXfJeHphpHg.65EULNNPUex2TJ35GkJsUSnksTcSMTjrr1.LnB+hW7hbk1ApzHHnv62vw3fPoGgfQbCcyFAHsxVpAW2bS0SBjjSxrGM8KAPBFFg1.u3F2NFMbPb3lRHb.nwF73F0EQ.TkgHcYccnF5lC3m.CxjVNGtLA.ITWgT3+g931n.tLuaiBdM1EC7z.QYKUSGWM1YbKFVkMAsZN9+BXM8CPPYyJaAQbbYayGCcN1v5n691kEq91uyOa1zyltVCcYregLlVPSIK3tFU0jZcWxjHDA.FduL6qYHejn5uF9No+MoSk92lNCyEQHxGf6wckcY9N6FFAutikg1c0aTeen08xzTRqg+8qi7FGumZvLCDg9miyUfRvY59cz2vyN..RFiqkXgjdcIYD60ppDJRJjSYTLM306fVYka68aR7UHvgHXeRMAHOWEjrMTk43v2V1nhV0ndcLIgy3i62+.UE7fA.ExkyU+XGzrJdQqMwt0A4Q9LODaSaIUGRMVvhWeUI7MlOAR7ZBsbTgXwKdbobKgulBS3SArQF7Nb8jGoMewvX8f9.T5KEEhoWVAvYArOyDWphe1f+5AiLAkQlFyHoA0MTnjY.t3NLbQ6dbQxH8glmgglmEXXKiBsmlofND9Vvr9se4J7CR7j3DwkPXgRPyf+d1Pb.0bOA6qhNTUaruFNVPhyGePU6JYc.zg.yw2XBO.dkvZhn.Lsb7jbappyba2T5j1klGwzGCsbyOBt08LMYJOOIitX2wtdCOBdLUrRKSckPVXlYD3hBo..4xJvPLIABKDfZHxMVxYJTEnOLjD8dvRToQ0jOewh4VvEnkeF0cGmTIq+YeyD+CweRItnIwBQjKFRjIDfFIcn+xrYHzUFZNeXFINFOIoA1pGjGYhERS9lf5n+m0swKW0XVvpgrG6qBJ+fnfJzGETAFg8jn49bcWdOEfdGYURYD0.P8FZAkxooRYb8WQR3t3yaTRFmJ4O9qe1a90O6EqvJomDKoEhehZgyknN8UqnF2yBE6fj6zkB.HonzUgOt9w54Cld9W9Gx7u+yeYX8bSnzQAE02fBAgzPrVQmmuSUIBLqMTvblcyZB9SG35XWlcKy1APBcnxn1ORYhHrGyVDJ0e5xaw9gIhf0NAE2osMNwTXIX.UJ1IuT.KnLDG3eHHjVz38x50brwhoC.kyBtuhxtFhpGnKowhv3rAp7pzNKMXcHTYe7SonGKaOIPVS0LrQFweFogQzUStxAG0dQC2.AcU2yGqLG9toAfPHC.6mY4zUC.RCiM.FNQGX2X+thZBW+XY74TFOMsYLrn7wD.SigH0UHR8Buzzn0ggRgy31LdqDiZZbrECtURWj5tlLcI6rWw4X9zyq7TzTx4k0XgqrDK2CxLQPoKBBY9XB3xqQvIIY.Z93QFfFgEqIAuqPH2A1jmaXnbE6gQG2XrBf9LfUMPCJ4Y15wTLgZblfo2SejtqLkOtrxz000hlFzMO5wyEilpCu7Bi8xOLRA8BKFJ3TIEkBwurMKbsJayoourGP2cT7SqYnogG2fx82DnzRWptprc1N64UH17SYOIz2YkIN6yJSBDBGvT3IF2tz2vkJHTXokceYXc2K0sCKqv7KkcQNtXB8kxaKj5Sf4yuT1tfJqvXTYCcvtDbWixXx7eXHmMHYLtmnI2QHljbGVeNwnmLVtX9SFiEOcgw3ouvvSmlJmce8tiS3oi7R2gR6i2ip.abDfelETitwoyhZaTJEgfnr2OtDLa6wVbyEiPO1OHQcy4Ufg3AfhYKFfzo8fk1o8ouT9hyuj.EXRBv1bsu+yitaQjzdWz0GXK4sbHJC2gPaJukOUByeqLRd2ABLRbWAtLRgEt4DxUv6sEw6E1mMbqbBCFscAsmOC9.yP1ywQScgykodp3nod9HGqwkuQcgrKG2Lpi79SdrIcOedeowmsDkgZRshw3S5AljIY3i6zYZSDFMxax0kbk3dGhsoJg5PriMvb9uitWwQ9bycA8zrDxEZKXpf8u7TsvvHrcNJqWSWuSgbeE1jNv5XOWOD0TW08.r1LHjYm7ThHMjyuaQyPS6lG6vKBdTBuNOQ1Sd28GJt7xOeeIv7QY09zf1G+Msc0sfP9.ZFzz1UHFtI1GB6PKxqgRfT044RZP2cVW.oMJpaX8onoka79u5BOGc8r.+TLj8jtlXnPdwQrwP2oR9OeA5S5+VoNCWreAyD7Vbu+dIdd+z0Sb5wj8decc5K8SWU0Q8mHdIHg1PAM8hOdN5hAvUnNeW4I2ms7HKSEVWYFvZ5My3dNe0KJIUx+6u6i9Lme+Iq3OdSgGubmhth2kDVWguG5JXPrWiDqjkey3fWm6TwY02gh4RilnzGAaHwIEM1PVbNEAUwYBu3zDUmAPpdaf24WVFoSWiMRShCfjs8SjjUxx75RLJpqda.kXx3knggjTUHhRU2c.vEisOY2JdIKPm0SfR1HWWtpntax0qOBya.pTyHinIxBanHJSk7ie01O+s93WEwElBdxdzyGw94V112SkBZGB4VcgA84ru2FjSKYJWiOleXfJyyWF1TUF5c.hUFZejig4k9AB0c7NdVwmDq9GOqeef2I+bONcVm3x9zYUf8NGps7AOBKcZnGr6zpBzKL6sNh8X52sJ4UISOmtTUI8.2LT4787LCiyMZRQHhaT1x+7ng8.2tglMjDok.6oCte04Yq9beXvJzuyTywGFrm2CC1TdznnJ9rNyC.EgFecjocMoFZNWjGKrrGy6cb7r9SKUQUGJYcwcBsxGw4q2f8DZMy0ie+JRbs+2uhymEJx8XLXl9xXU0KiwntjrkwSkoGAhXSuoI0f3acxObNo.ahKmQfqoOjmbb0QNveprr2KVT2ul7Cv0TX.tl4GfqYgA3ZVb.tlkFfqY4S8ZvqchOQRqS0+QUTcM5OhF7sS7LeBt+ekUGA.
-
Can't you use the
math.clip
node to prevent the foldback? -
@Christoph-Hart I tried that , it only clips the positive part of the lfo.
If I could make a Max and Min clip , it might work?
-
This post is deleted! -
@Christoph-Hart
Here is a patch with the amount set to a usable range , as you can see there is a bit of foldback with the amount set at max and the cutofff at the "lowest point" ( I have to limit the lowest point as well to minimize foldback)So ...usable but would be nice to be able to clip the lower point.
HiseSnippet 3240.3oc6c0zaiabFlzxiskV6M6l51lBTTHDzCafSDDk7WB8f05u10YkWKaYuYKZA1RSNxl0TjrjTxqRPuma4OPQ+AzCAEE8P.5gjSEn.4PQ6efsW5kdnA4OP67EEmgRxRVVxlxw5vFOevYdeed+XdmWNbRYWaMnmmsqjbxCa5.kjmETook+oabppgkzNaJIOC3Pnme5UjVuoipmGTWRVNwSvsJmbRIxuuYs0UMUszfgUII8BaCMXIiZF9g0Vt3yLLM2VUGdnQMtduXwczrs1v1ztNhRR.xJ4npcl5Ivmqh61D.I4o1R2v21shupOzSRdx0s0aV4T6ysn8+EFdFGaBwETjpfFHZ0aaapioXbsRabpgod4.N1SBMnkC4+DT9edvtF5FspODGd.ogzgOAOdHOwEQdJ7jW19l7j3ntIoTGhHr0qap5KRYXwAqACaKAJaGKenkmgeSdw0MJ49PPYCesS6L8NQGnWjfZTSuLg+bfspVEp4GRrSB19kCWIc1NoHJWtMCw2FT11royo1VFZaaX5CcIDTR.sfxEXOJIssK72TGZoEfhES8G+cE2mWE.A+bFfuSw8qqZJh5EW2vw1T0MpD4M6+E+9uLJLjn6v.u8XGX8I6S0le.nESk9pnqmn+DX8PHceJkB.k1dOlQH5uR2htU5kR8aVKpLJ8u7y910v9F2ITTV7yJ9QpMfUscqQmvP9pD7DzDwWygvZN1Hu2Z7ZBUpYa6epg0IhdbmuXIaamsrTQrtN+fT9TUO3dUq5A84GlMp64aWKfVHtjq3Cc1T0WUR9W.VdwLneUW.+uE1.8O42a3TVZ3onMQepn88HRxVhLrLMl6QkRwBlGw90.vdrRO1rl0OBvbFRP4wG599f8iWDKyu48.ULrfjHMYN2wkSi8uj9IPKnaa9PirD2eueC4zouC4bOMezzenqpkmisGuu1urBrlwg1VXDIb1NxChUFN.CsBtJsUc6XSeyZaiXxN9LUT8q6RjQOtlccq.5uX97+m0jSz2xjKQnuSdWnuCwvAdKJMNM3wOcyJGvbwQ96zaY0.ZZ6.E0l201xlFaGuZvAPeWiSNA5xSwcjMdruOZGRaT2sgfEvlPM0lsUKsysWSIHhz3q9oHgRaCWqJdymVrBJLfP6ve0W7S9ge0APSnpmfk0VZ1hgWdof8drLNnOUMlCPYxzD693taZFsRkHwahcV.QsXb.WeK.Sgcr.XuOfYKMN.sW3t3SLtsK9AeU.9cU7P1dz.UNU0AhlR7beOZoza+Rw8Dx7R+WAJKR17D2uF6on8qKU3o1p6uzFjxUV57mWnwJkJsJs79NMsKzH+wkVgVtvla+5BOU6YGvZO+pUUJT9YUZxd9iqr7lKzXoCcY8eup96uP4ceVkkok+vBO6fENz6COJ74ewBYVYuLrxZmu+OegpKcjE64E2rVi8jV2P0qDrpvdFw0cfwImJT4SQUTFAB7qWTx9bgp9z+YQw0OJVbuFPWO0ZNlncxxaCvEU3W80ec1hG.0qKFT3iq6aeRjziPhQbGKm5Bj1ltFhqatqwqERxIQ5QS+hPjfQiPafWbS5.659HNbWUTb.n4F7750pfBPUChzksrflnAGHOANHSZ4r3xj.HgV5jB+OzOViJ3xxrFUBZrCF3o.UzbMb7YZryxJFUkMAsZI4+.XKqSPgxlQyEh33M8bdNz+ba2ydz6tYkxu668ylK0bopV2RC6WHsiKzQ0EdncYS0lOhHDgn.fgue5iMs0NqhwGCeuTeRpjo9soRy8PDhbcbOdjFi4aua3H3s7csMejU8ZGCce+zMTMqGNdsk233snAyLPTz+RRL.kDmI6uQ+EV5..HLFWKwBI01pZH1qYYUzNoPNkQ6oAudGzMiVKueSgeBEIDAGRpI.4jJgv1HUlUBOr76JZC6Z0vjDNiOr+9iLzwSF.jOaVl9wAHoJdQqcwt0A4P9LOEaS6pVCRMVvvanpDdfkSffWGnquADCu34kxsD9ZZLgOMvCYv6K0Udj17ngw5B8AnzWRZHlAYE.mEvdHItVge9zM2EFYBJiLClQRApYqSISAtXdNtnUOFkLROn4Y3n44.1dZns1SyTPafuKLSX6WufuHwS1mHtDJVnDzL3ejGDugZoWf8UQmpx0O1DuWPhymvfpNT08DnOILmPiI7DDTBqIh1foqe.xsqgE2vtq5qaUZQDSeNzkkeDbqG43vUdQRFcwtiYdCOCdNEVokotRHKLyMCR8Co..YynvQLSBTVRfZH3FO4LMpBzONRhNF7DUJTM4xUnP1kXAZElQc17jDjOypExt3x8GYh4RAhb4HPlh.MR5PuwrYIzUZZNe3lIINOIo.dFmjCYhEQS99fZn+aFViWupw7VjJQsH6oJp7fnhpzCUTEN3dJjzOamQ7oAzQjWMkCrAfZ0MEw4TTbFW+MFFmcbFiSN429O183G7x+1Z7H8TXjVI9A0WM04T2rPMtm4KzFI2tSE.PUWuifOt96zyGL87OY9O+I+qO9OKnmmD3B0f3cOFINDW5lFxDzbrAzaKpj4.OVW+P6JFmXoZxuL0kKxjaRQUJv1Pn9w3Tc2tmeVbtLAQtXkf56lhFEAQyz.Gn5YQjK2iFHOtkaRIRmvVY41c.OKd12QGiDdMppDB+353COcOmVIdA5SAjVGECBj0EoCg1BEOAAIOLijdqW63B87vIzEiYBpPhE37+MCPyDpFcaXyRWrgzzcK2L3gt1ATmYxzgsreCm3gKNYCSS2mVPpDTtwx1PWHyDhnqogSaNjXpzFNwMGRwXcXQO8jMErX7XSAiwv5jfOH5JndjjIGIABAQ1faLVEVyrfMrQSJIQ9ALEW.ZWpfa5pOR1JS4hKqLcacsnY.cxid7bwnoayKuxcd4GFYkXokkDy9iptd93WBHTFuS.QvaclA0onm.XH6Xl8pp1ll34UD2+w.8lVp0Lz7xzdOuAiM+BdQU8TpLwkWpLEPI5FlhJXXcomaWJuR9UVk8ERwNfcs1VV9EWISe+NGF4zWxfyUTHAlK2JY5PTY4uKprgdvtj3tFmiIKL4lWtPx3bOQStiRLI4N79btrqKLBS6S1XaZeZOd572EO8HKd5TTbl8M+EmhmtuW5NRZeXQCRLND3m4.UomltLn1FmRQHnedcfWClsc4bOvhQnKuhv98Dajmi3AfBYJHP5zdvS6z9zSJe4EWQgFXRBv9RsF+EQiVeRZe.54ENmFqFgxvcHxI0X0KjvBOeKjCTpvLIcC3xHIFbypjMevQHN3q3je6VYUFLZaDcPfDdyyX643notxUxTOY7yTmLrwTS57YVMtYR22GYs6Ln65a6KE9yMdSnoZyXbzIcIhjo33i4aOoIJiGYM41RlRXiPrMQITGhsch1x8czCOHxma1Qz6xRQL.hj.cr+kWYFMHBO+yxDzzs6DH2SvlzAdG6Y6BTScU2kP0lEEW1qeEARi376Az7yzp46b30GdThtNOA6IeNmCEWd4VrmDXt9Y09TfV2HBsb0sjRNAMCZR6xGSRZ2kUenGIpibtjERTWfKoA8rYMBRZTejTtjAuDSbl2t6zWMpyPWWKHOCGYOEyDCsgW7903n6Y.qjsPVzVpZeuh8ZuLsd+eUQ+92+o+RQY4vb0S74wk59PUc5g.uiZ5n9SPWRfP6nijt3OX6Nn+2Mo.AIWcTq02Q1h8tkGM700ooLSaYVvVVMRyt7WtHJoOUSHVdhJHcXNIqNk1GuLvEFFROYutOq7E4jegA3EQDRCVYHKBmlrn6kJbpYvLZ1APR9PPvM9RZ0Ki3b3grsdcc7HK2Ivdbz93g.JwjNXe3CITUoOQU1qGez3ugbT9tlAz4B.Txob55UEkcBPu8.l2CTppc5JNHKrgBThack78IZJ9gP20W97UFX64GwKsCQ7otzU9MP2Z0JLFODcolbR7Gx07e9+cs9Cmoe1nWGQbfwobCes1i1gbccR4O78LAWf4xxaBaXnACtAa1D5clusy09MRx7A2Of3qBvv6GvuOH3pGsKWOfSbce8.pvOxQZKm3cnlecKwtSqRnWX1aaD6w0uGTLnRtdNSwxpVBCFpbttdo0Hw16ZEHhaz2K7BQf+FestoGjruNE9qm1vpywW8n41HDb2sQ3P71HLY.MVw.eY6DDOJgFeajocU05l9ix6kP96Y31te.+oEKYXAUcGcWQfx8o75c3uh.Se63BTOws9KP8qlEJx8XLPRecrp50wbTSUy09UZz6fKRZvH0f3aKx+maHIXWb4zJRMBCsIqTMjC7WooE7QL04mI2.7L4GfmYwA3YVZ.dlkGfmYkA3YV8BeF7Zm3qDuZT8eTEk2hdKtK2JM2xIj9+PhUHnV
Actually a math sqrt somewhat achieves this , but it offsets the cutoff point.
HiseSnippet 3326.3oc6cs7aiabFmzxiskV6M6ltMMEnnPHnG1.uQPTxuD5Aqc8irNq7ZYK6MonAXKM4HaVSQxPRIuJA8VAZts+CTz+.5ghhhdH.8PBZAZuDDTfdp21doWJJPPA5414EEmgRxRVVxlxw5vFOO3LeyuuGy22GGNorqsFzyy1URN49McfRxyBpzzx+30NV0vRZq0kjmArOzyO8xROpoipmGTWRVNw6haUN4jRjee8pOR0T0RCFVkjzyrMzfkLpY3GVa4hOwvzbSUc39F0358BE2Ry1ZMaS65HJIAHqjip1IpGAepJtaS.jjmZCcCea2J9p9POI4IejsdyJGaepEs+Oyvy3PSHtfhTEz.QqdSaScLEiqUZsiML0KGrh8jPCZ4v0eB55+dfsMzMZUeHNbGRCoCeBd7Pdhyh7T3Iur8M4IwQcSRoNDQXqW2T0WjxvrCVCF1VBT1VV9PKOC+l7rqqTx8tfxF9ZG2Y5chNPuHF0nldYL+4.aTsJTyOjXmDr4GLb4zY6jfnb41TDecPYaylNGaaYnsogoOzkPPIAzBJmg9njzltvOpNzRK.EKl529KKtKuH.B94T.eyh6VW0TD0K9HCGaSU2nbjWs6m8q97nvPhtCC75icXoOYeJ17FfVKpzWDY8D8GCqGLoaSoT.nzl6vTBQ+U5VzsRuDpe0pQ4Qo+vW9eVEaabqPVYwWV78Ua.qZ6ViNggqqRviPSDeM6Cq4XirdqwKITolss+wFVGIZw8dEKYa6rgkJZoqyOHkOV0CtS0pdPe9gYs5d910BnEhI4J9Pm0U8Ukj+wfkVHC5W04w+ag0P+S9cFNkkFdBZSzmBZeKBmrEKCySi4VToTrf5QreO.rEqziM6Y8cALigDTd7gtuMX23EwxradKPECKHwSSlwcb4zX6KoeWnEzsManQ1h6u1utb5z2tbtilOZ522U0xyw1i2V6mWAVyXeaKLhDNaG3AwBC6ggVASk1ptcroud0MQKxN9LUT8q6R3QOrlccq.5uX97+qUkSz27jygquSdiquCQ2AdMJMNM3gOd8J6wLwQ96zaX0.ZZ6.Ekl211xl5aGuXvdPeWiiNB5xSwcbY7PeeTDRqU2sgfFv5PM0lsUKsysWSIHhz3q9wHlRaCWqJd0mVrBxMfP8vexm88+NewdPSnpmfl0FZ1htWdtf8drMNnOEMlCPWjoI58wcyzLZkxQh2D6r.hXw3.t9Z.l.6XAvda.SWZb.ZOyn3SLtEE+fuK.eTE2kEiFnxwpNPzThm6aQKkdyOPLlPlU5+LPYARvSb+Zrih1OsTgGaqt6hqQJWYwSeZgFKWpzJzx65zztPi7GVZYZ4Bqu4KJ7XsmrGq87qTUoP4mToI64OrxRqOeiE22k0+cp5u67k29IUVhV98J7j8leeu26fvm+YymY4cxvJqc5t+n4qt3AVrmWLXsF6H8HCUuRvpBwLhqaOiiNVnxGipnLBD32unj8oBU8o+shh6eTr3NMftdp0bLQQxxqCv4U3W7keY1h6A0qK5T3Cq6aeTjziP7QbKKm5Bj15tFh6atswKDRxIg6QS+hfmfQ8Paf2bSZO659nU31pH+.PyM3o0qUA4fpFDIKaYAMQCNPdBrSlzxYwkINPBszIE9enerFUvkkYMpDzXGTvSApn4Z33yjXmkULpHaBZ0Rx+ZvFVGgbkMilKDshW2y4oP+SscO49u05UJ+Vu8ObtTykpZcKMrcgzNtPGUW391kMUadeBSDhb.F9fzGZZqcREiOF91o9jTIS8yRkl6gHD4iv839ZrEe6cC6Aukuqs48spW6Pn6CR2P0rd330Vdii2rF7hAh79WRhAnD+LY+M5uvbG..gw3ZIZHo1TUCs7ZVVEEIExnLJlF79cP2LZsr9ME9ITjPDbHol.jSpDBaiTYVI7vxGUzZ10pgIIbFeX+86animL.He1rL4i8PbU7lVaiMqCxgrYdLVm1UsFjprfg2PQI7.Km.AuNPWeCHFdwyKc0RVWSiI7oAdHEdeottFoMOZVXcg9.T5KI0EyfrBfyBXO3DWpvOe5l6xBYB5BYF7BIEnlsNkLEVE2iaUzpGixEROn4jbz7b.aOMTn8zLEzF36ByD19kK3KR7j3DwkP9BkflA+C7f3.pkdF1VEcpJW+PSbrfDiOgNUsup6QPehaNgJS3IHnDVRDEfoqe.xssgE2vts5KZUZAzh9TnKK+H3VOvwgq7BjL5hMGyrFdB7TJrRKSMkP1XlaFj5GRA.xlQgiXlDnrn.0PvMdxYZTEnebjDcL3IpTnZxkqPgrKxbzJLi5r4IIHelUJjcgk5OxDuJEHxkh.YJBzHoC8FylkPWoo47galj3rjjB3YbTNjJVDI4aCpg9uYXMd4JFyqQpDUirmhnxChHpRODQU3f6oPb+rcFwmFPGQdwTNvF.pU2TDmSQwYb8WYXb1wYLN4jIl+W7F+8u5urJOROEFoUheP8ESbN0UKTi6Y9BsQxsaTA.T006H3iq+F47ASN+St2u4c+Ge7uWPNOIvEpAwQOFwODWZPCYBZN1.5s4UxbfGpquucEiirTM42l574YxUIqJEXSHT+Pbpta2xOyOWFiHWrhQ8MSVinwpo.dejajP8tEy6GbCBXOMP61XIxI3YHznuOCVh7CP8ncVRXdoDxX3vwlkbhPrlKQSsPbty2AGty8RG4P+v9FxCBrO8yWkmMv8xj5jIsfAmWUYZfCT8jbQYHj.qvsbUpgzIzWVt8MDmEO6aoSDtZTUIjAgqiObgcbZkHLnOEVZczXHhvcQagPagLuffVFlQ1rwKbbgdd3DriwLAgLwBbJSy.zLgpQCKdVp5Dooa19evCknCnNSkoCoP4JNQPmcxellF2bPpcTtxx9SWHyDhnqogStNtCAtk3lAoXrLrhfXKIHsEhGAoMFCqSBdGkHlC7HI2ORBcB7zD2XrxMyYAqYilTxKVIXQw4v74xYytZijsyTt3xNSWW2KZFPmrnGO2LZ51rxqbiU9gQVhVboHgXopqmO9kPHkw6DBEI5oTzSjMjcr+ddUaSS77Jh6eOfdSK0ZFZdYZumWg9leFu3vdxUl37yUlBnDMfonLFVW5Y3R4Uxu7JruXM1AdrUXY4WX4L886.ZjSeICNmWgDXtbKmoCdkk+FuxF5N6R76Zb1mrvjMe9bIiy7DM4NJwjj6vay47tuvHLsOYiso8oc+oyei+ziL+oSQwY12fYbxe59dq6Ho8IHg6XkCg0ybfpzS2XFTaiSoHDzOud1KA01tbNTX9HzkWYa+dBZxyQ7.PgLEDHcZO3ocZe5IkuzBKqPcLIAXWoVi+BnQqOIs2A87BmalUhPY3ND4jyrxYRXgm2HxA7UXljtBLYjDCtYUxlO3HcG7U0xGtUVkAi1FQGLKgSB.VeNNppqbgT0SF+T0ICaLUkNelUhapz88QH7FE5t919Rg+7uWGZp1LF6cRW7HYJt0w8ZOoIJiGYM45RlRXiPrMQITChscBCy8MzCyIxla1Qz6xRQzAhj.cr8kmaF0IBO+SxDzz06DH2SvlzAdC6Y6BTSMU2EW0lE4W1KdNARiX76Nz7yzp4aL30GVThtOOA6IedsCESd4VnmDXt9Y29TfV2PEsL0snRNAICZR6xGSRZ24UdnGIpibNwERTWfIoA8rYMBRZTejTtjAuDSbl2t4zWMpyPWWKHOCGYOESECEvKNdMN5dFvxYKjEERU6wJ1qXYZ89+ph98O+c+ghxxg4pmXyiK08gh5zCkeGkzQ8mftDGg1RGwcwe.8cP9uabABRtxnVpuiKK16VdzrttLUkYRKyB1vpQZ1kwyYQI8oXBQyST.oCyIY2oz93sANS2P54xq6yJeQN9WnCdQXgTmUFxrvoIa5dtbmZF7BM6.vIuKH3F3Is54gcN7P1VutNdjk6DwONpebW.kXRGDG9PBUU5STk85wGM1aHGkuKY.ct..kbJmtbEQYm.zqOf4s.kpZmthCRCan.k3VWNeehlheX5c8kOegA1d9QUS6PDapKdgeCzs1sBiwCQSpIm7O8eu+G9x+3+d09CmoeFuWFdbfwobCeo1C1hb8oRWe368CNGykkWG1vPCFbiBsNz6DeamK8aHl6EbeMhuZFCuuF+1ffqB1tbcMNwk800nB+HGosbh2oc90sD6NsJgdgWdahVdb86NECpjqmyTrrpkvfgJmqqWhPRrXWq.QqF8cBufJ3uAdqa5AIw0ovecAGVcN9pGM2NjfatcHGh2NjICnwJF3K+n.+QIz3qiTsqpV2zeTdOQxeuO21803OnXICKnp6n6JaTtO4WuI+U1X5qGWn8It1eg1ewzPQlGiAb5KicUuLliZpZt1OWidmnQRCFoFz51h7+IMRB1FWNshTiPWaxJUCY.+4ZZAeDSc9YxM.OS9A3YVX.dlEGfmYoA3YVd.dlUNymAu2I9JJrFU9GUQ4Mn2p9xsRysbBo+OXt9lOI
-
Yes, actually a
math.min
andmath.max
node makes sense as it mirrors theMath.min / max
functions in JS / SNEX. -
@Christoph-Hart yep, that would do it.
-
@Christoph-Hart btw , is it possible to tempo synth the osc/lfo ?