HISE Logo Forum
    • Categories
    • Register
    • Login

    Scriptnode envelope ?

    Scheduled Pinned Locked Moved General Questions
    36 Posts 6 Posters 1.6k Views
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • Casey KolbC
      Casey Kolb @lalalandsynth
      last edited by

      @lalalandsynth I'm not sure I really understand it either haha.

      Let me see if I can whip something together. What in particular are you looking for? I ended up just going with the baked in unipolar modulation. It's fine, but a little clunky from a user perspective.

      Casey Kolb
      Founder & CEO of Lunacy Audio
      Composer | Producer | Software Developer

      lalalandsynthL 1 Reply Last reply Reply Quote 0
      • lalalandsynthL
        lalalandsynth @Casey Kolb
        last edited by lalalandsynth

        @Lunacy-Audio its ok , bipolar is working now , for a filter at least.

        Bipolar LFO and Positive going Envelope on filter.

        HiseSnippet 3110.3oc6b0DaabbEdWQM1lzRN1IJstAAArt9fCjCAIkjsE5AtRhhwJlxhRTxIEM.pq1cH0Vsb2s6tjxzoEn.sEv2b.5k9SZ50hVfh1a1mhQCP.JfMP.7kdztWJBbO3VflCsGRme1k6rKWJQQ82pe1CRb9am2ady6Meu2ryTxTWBZYoaxwGewlFPN9A.kapYu5TqJpnwMSdN9WCTQQ0FZB0ZXCsrW1RxTwvVSWFxMYSCQKKnLGOer2FWe938yQddQtIEUE0jfdYwwcKcEIXQkZJ1d4VR3FJppEDkgKpTio1iJLijt1T5p50QzVLPZNCQo0DqBuoHtZ8A33OwzxJ15lksEQzEGe+SpK2r7p5qqQq+sTrTVQEhSjgqL5EQytftpLlhw+lapUUTkK4NFXwgdok7FQhQGQFBLqhrRq78FYNKofjdsfc7fuuMh7xvRdoCk7xDB4wwPc8SoNDQnKWWUz1OkgEGNEnnq4ixlQyFpYoX2jUbsuRtmCTRwVZ0vo29BgdQBpca50Q3OHX5JUfR1dDa+fBuWuJo2BSD4K0lp4KCJoq1zXUcMEoBDcRBAEGPSjYCzG43JXB+A0gZRtihBI9Sejv7rSAlEqR2J84ElutnJyn944ROwjJF5phlAkHOc96+weRvggXc2vPHrd+c4zluFnESkb6LWu2oTVgzYnTJ.TrvbNJgnekrEcmYylT+zbAkQIe+68uygsMNimnT3dBuqXCXEcyZzNziuJBqh5H1bVDVyPGYOWhclP4Z551qpnU0uE2gDJpqaLslHh0kYeIkVUzBNWkJVPa1WyT0sr0q4RKDSxksgF4EsE43+tfqLZJzSkgw+c7oP+Yj41YRysyI95qKmn8JDIYKQFVlFwsnRoXepGQ90.vVrRdfYMquAvwXHYT9fCceFv7QKh0wt4oAkUzfDrmNF2woShsuj7sgZPy1rgFXItOuagbZz0PNmSxF08KZJpYYnawZq8SJCqorntFdDwq2VxBhmLr.dn0moRcQyPK5E4JfXxPaSYQ65lDYzD0zqq4R+BiLxyywGa2.wQ+GC8cyVOIc2CG3knz3IASb87kWvwDG42ImVqATU2.5e17r5Z5TrcrSCV.ZapTsJzjkhCkMlv1F4gzT0Ma3SCHOTRrYa4Rqb64TDhHM1ruNRnz1qqUFO8tBkQv.7zC+d2+M95ObAnJTzxml0zR59gWtShBCzkSMFDPYxjD89ntYZGZkJQh1D6..xzhCBiquDvYB6AhA1y.bzkNHLztgdwG6noW7rdXbNG+0.kWUz.h5dLcbZZpjEdO+9G5Xw9y.YFk3HEySi4xH88KN900EmeroHoKO152b7FWsXwqQSOuQS8waLxJEuJM834Kb6wutzMVvo7QtVkLiW5Fka5z9UJek7C2XrEMcp+bUrme3RydixWgl9cF+FKL7hVuyRds+VCm5pykxIsz5y+cFtxXKo4zd+Nt0XNtIUDsJBq3y+QbdKnTcUeYdcTFkPCBrqcTTeceYc2mH3esDAg4Z.MsDqYnh7pkUefAg3CeziRKr.Ttte.hST2VuZfPkPvKNilQcejVdSE+qgNqxs8EvShziFJFenB21n0BcR9B50sQb6rhH7AH5.by50Ji.tJAQyw0zfpnNBv2GF7IMcZbZBvRnlLIwWgdbJLCNMuSgYbKLDE+Dfxjv+5L6c.mjAm9FilMG+uGLsVUDD2TRlPD2m2x3lP600MW6RWHe4RW3M+1ClXvDUpqIgsWjzvDZHZBWTujpXyKQDnPDvX3kSthptzZkUtC7MS7AIhm3GkHISiHD4j3ZbIIGlu8pgQ1qYapqdIs50VAZd4jMDUq689ZKdx8Ldj8DQClYfHuB33bFPI3Oc9M5WXoC.fFiw4RzVRTPTBwdMKIh7vBYrF4qCdcPnYJoVVEOAtEY3PDbPRsHZz0W17wvuVWuknz+T50pgIJbrfb986pHi6N.+kQ0fNCYAjbEub1r9zxwizkDMEqAo5O784y5bLzHrAzzVAhGgwcMkgIr1Iwz9IAVH8eatNxlzh2s3sNPg8Sov3T7mtgL.GhvMQbreHCbM4zww69nbyovbSBPMcYJs5iUFhgUZUicWtYCo4SwPyCBzsjPN+SikPaR.SXJux2Wj.94AhCk3THPSwng5eIKH1yatagMdg6+R0WQE6xHeLNOjWKJZVEZSvB4oRgmh5lBOiD4EposiumJZNuPlk2Ducf7NKdoXnYfvovwsjgQa4dVAbvfwVrYWir7Zv0oi59bmkX4grldaTAW2Px+peI94A4ZmjSEJIOpPHjLBVAKI69NYI4Dfzoxlc7wSOlC1Mu.1GfVdUAtter9EgP3oCkveQtvFqSuEGqGfP2IogbpMZgiwhUBfkR0rHs3.JKmATC8+TNEtunovBVNfl+lpGvu8zCdQttWO.IGXjMevP+w29Y24mtAxlSBncV6JBLlw.fZ0U8KQRPkH372+sac3RBP0n+q9TLNAVBjIRIB1oTHRDwEGe4kd+68W9O+sbAYJLe6WIQTVNTIDN+iUR1YkJ+iO5+8yG6W+YATRLfhq4WDbZJLKRAQesDd91mkM.lflQFydVMpjwSjgyiERvbFs7YFZSGnZs653O.fMRdNpPaxSD9jcRrLw6+w+vu3p+jZON2z2F42skENfc3QTeyAYUnhCLgRPbPPB.b1j5uaJ2hif.mGDLgr7h5kUppIp1B7beaEvyQXswDfBPn7J3czoUud8mcGT69hbrRvSRTHyFszHOVKby0BCQkjXg8T.IUnXPWYGftLGon8airwNRfMuSlLQxGb3OxDEC1SGBWxI7YuPRUwHSP6ENytTLNFE0N7Dp+472+M9YO+YAPQgvqNRjBH6QEeuC.pMA8KqC574arbEcUULw3W175.4lZh0TjrR0dM2usF2wH7toxs91VxMg608wNDU2MeYyw9ES8Me7u4w4nVYc9bV76x9CpuUBB2dMQG2cq88n5QGA8HoJvtBBBdCTSNXz2bQbSJKBB2d.vT5ndlryas3uVtOrEPcyp4QQulIZgd0SgJp3YYr8aLsLQIuacszAG6HQLbrGUwtlfJSbNiIQPrqc0RZA1jXGvTDMKerzfNGvMqTnxNv4uDn6Cc6do6rcb+wbWsLzv21M5OiPddhu8L6wOB+7sBvKt0zOu3V2MmW9ue7u6Kuv+5yI7RLv7bAHgysUfWj8gsqumMzw9rOLL88rcA85e+TIe6SsQEbQKSTeUyeaoWI+Sbltz5jI4Q2tMi6f7VWGHpMIvGNm7PUwlQcaqabLBHLyPs6OTlCPNDcn1MH22yAP2fPlsaa+VyFU2u085fbdQg8bfhWTfUbDGHiMesrZPjTV1qkxsniXQlZqHTtXHKwvwsQBE5xEc5qBIN0o6JJ2dYxne.Kvmk5jbqhO1p61y.leTKDQC47YrCa3k6C2BSo9vsHpkDfVm.x.85O1mpNMpKiDY2E+Xa6XsP9Rd7EqEWafam8NbuzA+tHLKwc2OGbrTNd2BiNQboiI36mg2NgiJqhpM1mZtt04dORF.RmJiukXHGpA2FTsB54A+AAdduH2Rr7xDHWOkF52VUn5Ln5SjBj.ANiLZh.9LeEhlTzU8ITV1Ya3NrxyAmqM.XZsFIcN54aFoRiGxmtE59.634eNWv4c7cXdGFs+QGY.AZQRa7hzcKHzdPFz5fp0Ux.Or+AjCTHp6dxg69o8LB62ZpW+4+8q7Z8nb3b.2SreRwtSgXqOWnsuaqtUXzZS0XEFLePXGBzKVZFxkJDcL.ep2XvHvymG1PQB5d1ZyCsVyV2XO+7QNj6sXB9BKw6VL4UAtWPRc3RLou85KwjLru4.kk0+M8fccM+UmlkuZgYuBH1KCa7ScyjolmRnjnluWFJc1NdbZ4b.ZWFh3F447NTVr2KU0UsfDTlYXuDs7xNKa1AOEtft63c5+xDgo9a7wy02cRwwWlJa2KSk3tzXYE7YB10bLgFeYjNeEw5p16lWqJrWSZsc8lbQghJZHum18tgS36R404YugSRd339e7vzMGwtgFJxtYDPRuWrb6dQeTSTxTeYI5UE.43CSxAw2ZjKd13fYwoSlgqAELD1u5zb0PFvWVRBO63sPiOg2lr8PaFoGZyn8PaFqGZyU5g1b0dnMWaCaCdsS7s3QM57eTFklldITxy7QQw8+kfNhzB
        

        Invert envelope added.

        HiseSnippet 3129.3oc6b0DababElTqFKq0RN1IpsNAAAac8AGHmEZ2Ux1B8vRIsRVJdk0JsRNInAPkhbVIVwkjkj6JuIs.EHs.9lyw1h1zqEEEA8nyIazf1S1.A0GZO5zaENGTKPygdIc9gb4LbojV8O0O7fzN+w46Mu48l26MblR1lJPGGSaAwtmugETPrGP4FFtqL1JxZFBSUPP70.Uzzcg1Pi5tPG2EcTr0rbMLUgBi1vR1wApJHJl3V35K1cmBjm0yOprtrgBLHKAg6Zpo.KpUUyMH2RR2VSWeBYU37ZUYp8fRSoXZLlotYMD1R.FPvRVYU4kg2QFWsN.BhmYbUMWS6xtxHbIH14nlpMJuh4ZFz5eWMGskzg3DYDJidQzrmvTWEiX7uEFaEMc0R9iANBnWZofQjDzQj9.Sqop0L+fQlKPJHUPKXGOD6XyfWFV3MPjvKSDvSfAccRQGBDlp0zkc4QFlc3UfloAGxlxvEZ3n41fkccnB2KBJo4prRz3siHvKhQseiWOleufwqTAp3F.1NAS7t6TN81XhnXoVDMeYPIS8FVqXZnoLAQlj.ntAzDY1D4QAgIrg+3ZPCE+QQoj+oeizrrSAlFKR2L8kjlslrNyn9kDFXjQ0rL0ksCyQd9rO7SdT3ggDs2vPDjdms4zluMnIQkZ2LWemiTVlz4oHE.JNwLdBgnekpItyrUSped9v7nTu+C9O4w5FmJfUJ8.o2QtNrhocUZGFPWEgKi5H1blGV0xDoOWgclP4plltqnYrLuF29jJZZZMtgLhzUYeIkVQ1ANSkJNPW1WyX0bbMq5iEhJ4xtPqBxtxBh+.v0GLM5oR+3+N7Xn+jal8lzB6cruNZyIZuBgS1jkg4owbMpTDyIdD6WC.qwJ0Ql0rdUfmxPxn7QGbedvrwKv5o27bfxZFPhsmdJ2woSg0uj5VPCncK5PCsD2WztlbZ01lbNihKp6m2V1vwxzgUW6iJCqpMuoAdDIn2VvAhmLLGdnkSUoorcjEsd9IPDYjsorraMaBOZjpl0L7wuTtbuHuXh8CKN57TSe2p0SFn8MG3knXrKvHSVn7bdp3H+N03F0g5lVP9YySaZXRssicZvbPWaskWFZyh3HIiQbcQdHMVM65bR.EfJxMZIWZkaMmhPDzXydRDSokWWyLd98kJiLCHPN7G9v236734f5PYGNIqwUL4MubuzJLPaN0nW.kHSQj6i6po8vJkiDuAaO.xzhiBiquDvaB6QhA1yC7jkNJLztodwm3joW7rdXbQO+0.kWQ1Bh5dLNNGMUpIdWd+C8zX+WAYFj3HEyS8Yxn7iJN7jlxyNzXjzkGZs6Lb8aTr3Moom0pg4v0ysTwaPSObgIt2vSpb647JO2MqjY3R2tbCu1uT4qWn+5CMusW8moh6r8WZ5aW95zzu8v2dt9m24sWHn82s+z2XlzdoUVa12q+JCsfgW64cbq9LBipI6TDVgy+Qbdyos7JbYNIJiRnAA10NJZtFWV2+YR7qkHIMScnsibUKcjWsrxCLVH93m7jAjlCpVi2.wQp4ZtbnPkPrWbJCqZbPqfsF+ZnSqcOt.dR3dzPwvYU3t1ZsHmjOmYMWD0NsLx9.DN.2oV0xHCWUfn43FFPcTGAD6.a7IM8.3zDCKgFpjDeC5wqvL3zhdElwuvHD7SBJSB+q2r2d7RFd5aBZ1Bh+Av3FKiLwMshMDQ8EbrtCzcMS6Uu5kKTtzkeyueuI6MYkZFJX8EorrgVx1v4MKoK23pDFJDYXL7ZoVR2TY0xZe.7MS9gI6N4OMYJlFQ.4n3ZbUEOhu0pgsr2v01T+pF0ptDz9ZopKqWK380R7j2w1ibfvZvDCD4Ufff2.Jw9Suei9El6..nwXbtDokjSHqfHuFkjQdXgTVi70AuNHzNsRSshmA2hLBH.GFpEQitbYKl.+Z88Vhh+wLqVECJbrf7986noh6Nf30P0fNCYNDeEub1zbR43Q5Rx1xUgT4GwN3zNm.MBaAsc0f3QXbWSIXBo0EF6cAbPx+tBaHYRKd+h11.D1IEgcSs+zOjA3PDtEriCCdfuJmMb7tCJ0bVL0jDT0TkhUNRoOFRoYM1eolMEymkAy8BLcTPN+SikPKb.aX5fxOT3.7z.wgRbJjQSIng5eAGH1yag6hUdg6+R0VRG6xnXBg.KulW1dYnKwVn.QJ7TT+T3YjHuPsc878Tyv6Exr7l78Bk2EvKECsCENEAgErrZI2KHgCFLViM6ZjkWEtFcTmycVhlGxZ5sfBg1Ax+5eE94yx2JjSGIjGTJBHiLqfEx9uSVHmDLP5rYGd3AFxy1sf.12ree5SvOeUdg1erd8H.9.QB70yG0X8.ayw5dH3NEMjSsfEAFMVIANZKmEIEGRX47fpn+m1qvCEIEVikCI4ukxAh6N4f0y29xAH9.Cu4C66Su0W9A+7Mg2zEf1YsJHvnFC.pVSmmijjxQv4e3q25XMGnap5JzHclXEKXuRfHYLmc70W88eve9+9OxGlnvzMuPhrpZjbHb9mJjr2xU9Hk+3e68V8KyyKjXAkWkmEbNpYVjBh+RIhhsNKqGLflRESdN0qjIfkgyi0jfYrZ5yLzkNP0b20we..aF+bPoV3mH6S1KskAYoxO4eciOp5SyO98P9c63fCXGdDkaNHq.U2.anBDGDjPFNaS82MsewwPCm6ELhp57lk0V1PVuowycrcLdNFKMlDLADptDdGcZ1q31z2m92yyxA6hHPlMdIQdpT3VKEFgHIQC6YAJ5P4vtx1CcYNRQG1JYSbhvxvMRkIh+fC+Ql3Xvd1fvkzEm9BEcMqLg0W3M6Ry5Tqn1imP8Uy9v23W7hvVQgrWMWrxP1SJ9dGxn1jzurNn2muwhUL00wfgm275.0FFxU0TbR2ZMOr0FugQ3cK4acrq3aROn8icHpta8xlC8KG669ze6SyS0x584rvGPvOqljP7Ezc6u09AndvbnGEcI1UPHAZH2ow54.cE80yyyBbfFpgC.puSOjxhgd7zCXLSTOS17ylzWSO31FN9vp7i5.Ql3kCDA5zhKN2m3v1sBlMpnc8t2yUhbwLWINo59PRJOw6X9DCcensrpHz9z6YOKQxhij506LF5jFU1QNWVAsezyOHinvFtEk9FrDYDzaG4mbjmmwsskz8876EhV7qIOs3W2slV9eexu+qu7+9KHzRBvrBgfvE2NV3k8wsJumMxw9rONJ48rsAd42RaxmeVKnPHdoh5aZ76J8JEdl2zklGNr.b62Lgixe8.gBbVR74ip.TWtQbW25FnQ8LLDSes5RZliP9jdr1ST+2yQPOQQpsaYKuyFW2x6C53LeEoCbCEuhDK6nafJV80h5gsjxwc0z9EcBK3faGlxUhXIFAgMioPWtXS+rP5AYG68VjL5GRC7EnNI2r3S05t6Tfwa0Bg0PNhL6wJdE93swTpOdaZ0RRPyCgZnd8mwIpSi5RtX6GRQhccrVHeLUbwZwWG3tY6aOHcvuMByR29aoFNVJmtgswmHtrgI37r+LdhrZ5tXepEZWm6CfL.LP5LbKwPNWIraZwqN4eQRTLHxsDMuLAxMPng94sEoLCp9Dt.IPfSohlHfO1cQHIEeEehjj81Iziqzb34Z8.F2ndJuS++VAUZ7P97sQ22xqK77NwMXdG1Z+SN7.hoEobwKR2tFgtuyCBr8ODefZh59Ge39e9N1B62ZrW+E+yq+Z6P9vEA9WZBojaOAhs+bgV9z4ZWlQyMUikYv7M4cLTt3h.JVS4GNo8S9QyS2dawO71w78SMTq+nCONwBSQtgsnTO9HfxXslnXAXcMEn+AMu.zYUWSqC7CKbe9WoO3aumfqzmuEv+1BaCtQe53f9F8IC6aNTYY4u1SbqYvWcZVb0BSdSfHuLrQx1OSlZdVoRxFbuLT5ra3YKWvykmxPD0nNSvITj8RZqltCjXueF1aTtfryxlc3ijNn8Nqy72rNL0eyOq5bWPKmdyBsauYg51Gik0vGPd+EFIX7kQx7Ujqo6tedGCwdmA1xc8yUjJpYf7ic+659QrM4WWh859I0wiKC0iSWiJ6GRnH8lw.N8AwxsGD8QUYEayEUn2aFjyROIGDcaPtEl6FLMNcpLB0oFCgivw.BUQJvWTQAO63sPiOQ2lr6f1jaGzlA2AsYncPat9NnM2XGzlatosAu1I9JsoJc9OJiRiSuQVEY97zD9+.uMJtz
        

        I am going to try and build a proper analog synth modulation system , will post here as it develops.

        Hmm. found a problem...
        When the cutoff is low , and the amount is high the lfo "folds back" and the negative portion goes positive.
        Also happens when its when its maxed out in the other direction. No idea why at the moment.
        For this purpose i cannot use Sig2Mod or I am back to the default behaviour.

        Not finding a solution for this... hehe, it should not be so hard to get this to work in the right way .
        Anyone have ideas for this ?
        This can be somewhat fixed by limiting the LFO amount , I think its possible to hit a sweet spot...

        lfo.jpg

        1 Reply Last reply Reply Quote 1
        • lalalandsynthL
          lalalandsynth
          last edited by

          Amount set to minimize lfo foldback.

          HiseSnippet 3282.3oc6c07aiabEmzRiskV6M6ltsMEHMUHnG1.uQPTxeIzCV6ZYm0YkWKaZuIEs.aoIGYyXJRtjTxVsn8V.xsbn.8TQA50dpnmVflhDjCIW1BTf7OvdeOzfdrWZmOHEGRIYQKKaS4HcvVyGjy68l26M+dONbTUKCYnssgEGepcaYB43mAH1R24vUOTRUmaixb7SC1EZ6jYdtGzxTx1Fpvwym38vsxmJIG4y2txCjzjzkg9Uww8DCUYXE05pN90VsziT0zVWRAtqZcldOeoMjMzW0PynAhRR.xwYJIejzAvGKg61D.N9IWSQ0wvRzQxAZywm7AFJsDOz3XcZ+ehps59ZPbAANQzMhV85FZJXJFWK2pGppoT0iis4P2zp97eBJ+eGvlpJpsq2WNbKRCY7uBV4A+DmF4IvRd4hL4wwPcIoTGhHLTZnI4DjxvSGtMnZnGfx1P2Apaq5zhc55JkbuMnppi7gcmdmnKzKZh5hldcm7mErVsZPYGehMIX8Ob3NSmqaJh7U6vP70AUMzZYdngtp75pZNPKBAkBPKHbJ1ibbqaAeVCntrmTrT5+5erz1rp.HwOiA3aTZ6FRZAk5kdfpogljU3YjWt8y+SedXwPhdKFXsG6BqmLhpM+.PalJy4QWOQzlv5yjzMoTJ.TY8sbMBQeKSa5VneJ0ubkvyQY9ke5+YEruwM7mJK8ok9.olvZFV0oCnOeUAd.ZfXqYWXcSCj2aYVMAw5FFNGppePPOt2oTECCy0zkPrtB6Mo5gR1vspUyF5vdaVsgsiQcOZg3RVzAZVVxQhi+W.Vb9rnO0lC+2hqh9SgsFNk4FdJZSDQEsuGYlr8TFdNMl6QkRwALOh8qAf8XkYjYMqeDv0YHQJO5P22Drc7hXc8adCfnpNjfzz04NtbFr+kLuGTGZ0gOzPKw8uhJjSyHC4bKYGzvuqkjtsogMqu1OWDVWcWCcrDwez1yFhUF1AKZC3pzPxpqM8sqrNhI650HJ4zvhLGc+5FMz8n+REJ7pU3SD44Dgni3H4XnuCQ3.uFkFmBb+GVVbGWWbjumYM8lPMCSXPs4MMzMnX6XUC1A5XodvAPKVJtqrw8cbPQHsZCqlAr.JCkkZ0QszN2YMUfHRis5GhlT5310thW9IkDQv.7sC+UO+s9gewNPMnjc.Kq0jMBBu7LI16yx3fHpZLKfxjYH18wc2ztzJcFIdSry.HpEiBx0WC3pvNRHXuIv0VZTPzdpQwmXTKJ9AeU.1nJtsaLZ.wCkLgngDO12fVJy5eXvXBc8R+U.g4IAOw7o4VBxeTkhOzPZ6EVkTVbgiebwlKUoxxzxaa1xnXyB6WYIZ4hkW+jhOT9Q631dgkqITr5iDa4d86KtX44ZtvtVt8eqZNaOW0Mej3hzxuewGsyb6Z+964e8OYtrKsUV2xxGu8OetZKrmt60GLXslaw8.UI6JvZAhYDW2NpGbXfJeHphpHg.65EULNNPUex2TJ35GkJsUSnksTcSMTjrr1.LnB+hW7hbk1ApzHHnv62vw3fPoGgfQbCcyFAHsxVpAW2bS0SBjjSxrGM8KAPBFFg1.u3F2NFMbPb3lRHb.nwF73F0EQ.TkgHcYccnF5lC3m.CxjVNGtLA.ITWgT3+g931n.tLuaiBdM1EC7z.QYKUSGWM1YbKFVkMAsZN9+BXM8CPPYyJaAQbbYayGCcN1v5n691kEq91uyOa1zyltVCcYregLlVPSIK3tFU0jZcWxjHDA.FduL6qYHejn5uF9No+MoSk92lNCyEQHxGf6wckcY9N6FFAutikg1c0aTeen08xzTRqg+8qi7FGumZvLCDg9miyUfRvY59cz2vyN..RFiqkXgjdcIYD60ppDJRJjSYTLM306fVYka68aR7UHvgHXeRMAHOWEjrMTk43v2V1nhV0ndcLIgy3i62+.UE7fA.ExkyU+XGzrJdQqMwt0A4Q9LODaSaIUGRMVvhWeUI7MlOAR7ZBsbTgXwKdbobKgulBS3SArQF7Nb8jGoMewvX8f9.T5KEEhoWVAvYArOyDWphe1f+5AiLAkQlFyHoA0MTnjY.t3NLbQ6dbQxH8glmgglmEXXKiBsmlofND9Vvr9se4J7CR7j3DwkPXgRPyf+d1Pb.0bOA6qhNTUaruFNVPhyGePU6JYc.zg.yw2XBO.dkvZhn.Lsb7jbappyba2T5j1klGwzGCsbyOBt08LMYJOOIitX2wtdCOBdLUrRKSckPVXlYD3hBo..4xJvPLIABKDfZHxMVxYJTEnOLjD8dvRToQ0jOewh4VvEnkeF0cGmTIq+YeyD+CweRItnIwBQjKFRjIDfFIcn+xrYHzUFZNeXFINFOIoA1pGjGYhERS9lf5n+m0swKW0XVvpgrG6qBJ+fnfJzGETAFg8jn49bcWdOEfdGYURYD0.P8FZAkxooRYb8WQR3t3yaTRFmJ4O9qe1a90O6EqvJomDKoEhehZgyknN8UqnF2yBE6fj6zkB.HonzUgOt9w54Cld9W9Gx7u+yeYX8bSnzQAE02fBAgzPrVQmmuSUIBLqMTvblcyZB9SG35XWlcKy1APBcnxn1ORYhHrGyVDJ0e5xaw9gIhf0NAE2osMNwTXIX.UJ1IuT.KnLDG3eHHjVz38x50brwhoC.kyBtuhxtFhpGnKowhv3rAp7pzNKMXcHTYe7SonGKaOIPVS0LrQFweFogQzUStxAG0dQC2.AcU2yGqLG9toAfPHC.6mY4zUC.RCiM.FNQGX2X+thZBW+XY74TFOMsYLrn7wD.SigH0UHR8Buzzn0ggRgy31LdqDiZZbrECtURWj5tlLcI6rWw4X9zyq7TzTx4k0XgqrDK2CxLQPoKBBY9XB3xqQvIIY.Z93QFfFgEqIAuqPH2A1jmaXnbE6gQG2XrBf9LfUMPCJ4Y15wTLgZblfo2SejtqLkOtrxz000hlFzMO5wyEilpCu7Bi8xOLRA8BKFJ3TIEkBwurMKbsJayoourGP2cT7SqYnogG2fx82DnzRWptprc1N64UH17SYOIz2YkIN6yJSBDBGvT3IF2tz2vkJHTXokceYXc2K0sCKqv7KkcQNtXB8kxaKj5Sf4yuT1tfJqvXTYCcvtDbWixXx7eXHmMHYLtmnI2QHljbGVeNwnmLVtX9SFiEOcgw3ouvvSmlJmce8tiS3oi7R2gR6i2ip.abDfelETitwoyhZaTJEgfnr2OtDLa6wVbyEiPO1OHQcy4Ufg3AfhYKFfzo8fk1o8ouT9hyuj.EXRBv1bsu+yitaQjzdWz0GXK4sbHJC2gPaJukOUByeqLRd2ABLRbWAtLRgEt4DxUv6sEw6E1mMbqbBCFscAsmOC9.yP1ywQScgykodp3nod9HGqwkuQcgrKG2Lpi79SdrIcOedeowmsDkgZRshw3S5AljIY3i6zYZSDFMxax0kbk3dGhsoJg5PriMvb9uitWwQ9bycA8zrDxEZKXpf8u7TsvvHrcNJqWSWuSgbeE1jNv5XOWOD0TW08.r1LHjYm7ThHMjyuaQyPS6lG6vKBdTBuNOQ1Sd28GJt7xOeeIv7QY09zf1G+Msc0sfP9.ZFzz1UHFtI1GB6PKxqgRfT044RZP2cVW.oMJpaX8onoka79u5BOGc8r.+TLj8jtlXnPdwQrwP2oR9OeA5S5+VoNCWreAyD7Vbu+dIdd+z0Sb5wj8decc5K8SWU0Q8mHdIHg1PAM8hOdN5hAvUnNeW4I2ms7HKSEVWYFvZ5My3dNe0KJIUx+6u6i9Lme+Iq3OdSgGubmhth2kDVWguG5JXPrWiDqjkey3fWm6TwY02gh4RilnzGAaHwIEM1PVbNEAUwYBu3zDUmAPpdaf24WVFoSWiMRShCfjs8SjjUxx75RLJpqda.kXx3knggjTUHhRU2c.vEisOY2JdIKPm0SfR1HWWtpntax0qOBya.pTyHinIxBanHJSk7ie01O+s93WEwElBdxdzyGw94V112SkBZGB4VcgA84ru2FjSKYJWiOleXfJyyWF1TUF5c.hUFZejig4k9AB0c7NdVwmDq9GOqeef2I+bONcVm3x9zYUf8NGps7AOBKcZnGr6zpBzKL6sNh8X52sJ4UISOmtTUI8.2LT4787LCiyMZRQHhaT1x+7ng8.2tglMjDok.6oCte04Yq9beXvJzuyTywGFrm2CC1TdznnJ9rNyC.EgFecjocMoFZNWjGKrrGy6cb7r9SKUQUGJYcwcBsxGw4q2f8DZMy0ie+JRbs+2uhymEJx8XLXl9xXU0KiwntjrkwSkoGAhXSuoI0f3acxObNo.ahKmQfqoOjmbb0QNveprr2KVT2ul7Cv0TX.tl4GfqYgA3ZVb.tlkFfqY4S8ZvqchOQRqS0+QUTcM5OhF7sS7LeBt+ekUGA.
          
          1 Reply Last reply Reply Quote 0
          • Christoph HartC
            Christoph Hart
            last edited by

            Can't you use the math.clip node to prevent the foldback?

            lalalandsynthL 3 Replies Last reply Reply Quote 0
            • lalalandsynthL
              lalalandsynth @Christoph Hart
              last edited by

              @Christoph-Hart I tried that , it only clips the positive part of the lfo.

              If I could make a Max and Min clip , it might work?

              1 Reply Last reply Reply Quote 0
              • lalalandsynthL
                lalalandsynth @Christoph Hart
                last edited by lalalandsynth

                This post is deleted!
                1 Reply Last reply Reply Quote 0
                • lalalandsynthL
                  lalalandsynth @Christoph Hart
                  last edited by

                  @Christoph-Hart
                  Here is a patch with the amount set to a usable range , as you can see there is a bit of foldback with the amount set at max and the cutofff at the "lowest point" ( I have to limit the lowest point as well to minimize foldback)

                  So ...usable but would be nice to be able to clip the lower point.

                  HiseSnippet 3240.3oc6c0zaiabFlzxiskV6M6l51lBTTHDzCafSDDk7WB8f05u10YkWKaYuYKZA1RSNxl0TjrjTxqRPuma4OPQ+AzCAEE8P.5gjSEn.4PQ6efsW5kdnA4OP67EEmgRxRVVxlxw5vFOevYdeed+XdmWNbRYWaMnmmsqjbxCa5.kjmETook+oabppgkzNaJIOC3Pnme5UjVuoipmGTWRVNwSvsJmbRIxuuYs0UMUszfgUII8BaCMXIiZF9g0Vt3yLLM2VUGdnQMtduXwczrs1v1ztNhRR.xJ4npcl5Ivmqh61D.I4o1R2v21shupOzSRdx0s0aV4T6ysn8+EFdFGaBwETjpfFHZ0aaapioXbsRabpgod4.N1SBMnkC4+DT9edvtF5FspODGd.ogzgOAOdHOwEQdJ7jW19l7j3ntIoTGhHr0qap5KRYXwAqACaKAJaGKenkmgeSdw0MJ49PPYCesS6L8NQGnWjfZTSuLg+bfspVEp4GRrSB19kCWIc1NoHJWtMCw2FT11royo1VFZaaX5CcIDTR.sfxEXOJIssK72TGZoEfhES8G+cE2mWE.A+bFfuSw8qqZJh5EW2vw1T0MpD4M6+E+9uLJLjn6v.u8XGX8I6S0le.nESk9pnqmn+DX8PHceJkB.k1dOlQH5uR2htU5kR8aVKpLJ8u7y910v9F2ITTV7yJ9QpMfUscqQmvP9pD7DzDwWygvZN1Hu2Z7ZBUpYa6epg0IhdbmuXIaamsrTQrtN+fT9TUO3dUq5A84GlMp64aWKfVHtjq3Cc1T0WUR9W.VdwLneUW.+uE1.8O42a3TVZ3onMQepn88HRxVhLrLMl6QkRwBlGw90.vdrRO1rl0OBvbFRP4wG599f8iWDKyu48.ULrfjHMYN2wkSi8uj9IPKnaa9PirD2eueC4zouC4bOMezzenqpkmisGuu1urBrlwg1VXDIb1NxChUFN.CsBtJsUc6XSeyZaiXxN9LUT8q6RjQOtlccq.5uX97+m0jSz2xjKQnuSdWnuCwvAdKJMNM3wOcyJGvbwQ96zaY0.ZZ6.E0l201xlFaGuZvAPeWiSNA5xSwcjMdruOZGRaT2sgfEvlPM0lsUKsysWSIHhz3q9oHgRaCWqJdymVrBJLfP6ve0W7S9ge0APSnpmfk0VZ1hgWdof8drLNnOUMlCPYxzD693taZFsRkHwahcV.QsXb.WeK.Sgcr.XuOfYKMN.sW3t3SLtsK9AeU.9cU7P1dz.UNU0AhlR7beOZoza+Rw8Dx7R+WAJKR17D2uF6on8qKU3o1p6uzFjxUV57mWnwJkJsJs79NMsKzH+wkVgVtvla+5BOU6YGvZO+pUUJT9YUZxd9iqr7lKzXoCcY8eup96uP4ceVkkok+vBO6fENz6COJ74ewBYVYuLrxZmu+OegpKcjE64E2rVi8jV2P0qDrpvdFw0cfwImJT4SQUTFAB7qWTx9bgp9z+YQw0OJVbuFPWO0ZNlncxxaCvEU3W80ec1hG.0qKFT3iq6aeRjziPhQbGKm5Bj1ltFhqatqwqERxIQ5QS+hPjfQiPafWbS5.659HNbWUTb.n4F7750pfBPUChzksrflnAGHOANHSZ4r3xj.HgV5jB+OzOViJ3xxrFUBZrCF3o.UzbMb7YZryxJFUkMAsZI4+.XKqSPgxlQyEh33M8bdNz+ba2ydz6tYkxu668ylK0bopV2RC6WHsiKzQ0EdncYS0lOhHDgn.fgue5iMs0NqhwGCeuTeRpjo9soRy8PDhbcbOdjFi4aua3H3s7csMejU8ZGCce+zMTMqGNdsk233snAyLPTz+RRL.kDmI6uQ+EV5..HLFWKwBI01pZH1qYYUzNoPNkQ6oAudGzMiVKueSgeBEIDAGRpI.4jJgv1HUlUBOr76JZC6Z0vjDNiOr+9iLzwSF.jOaVl9wAHoJdQqcwt0A4P9LOEaS6pVCRMVvvanpDdfkSffWGnquADCu34kxsD9ZZLgOMvCYv6K0Udj17ngw5B8AnzWRZHlAYE.mEvdHItVge9zM2EFYBJiLClQRApYqSISAtXdNtnUOFkLROn4Y3n44.1dZns1SyTPafuKLSX6WufuHwS1mHtDJVnDzL3ejGDugZoWf8UQmpx0O1DuWPhymvfpNT08DnOILmPiI7DDTBqIh1foqe.xsqgE2vtq5qaUZQDSeNzkkeDbqG43vUdQRFcwtiYdCOCdNEVokotRHKLyMCR8Co..YynvQLSBTVRfZH3FO4LMpBzONRhNF7DUJTM4xUnP1kXAZElQc17jDjOypExt3x8GYh4RAhb4HPlh.MR5PuwrYIzUZZNe3lIINOIo.dFmjCYhEQS99fZn+aFViWupw7VjJQsH6oJp7fnhpzCUTEN3dJjzOamQ7oAzQjWMkCrAfZ0MEw4TTbFW+MFFmcbFiSN429O183G7x+1Z7H8TXjVI9A0WM04T2rPMtm4KzFI2tSE.PUWuifOt96zyGL87OY9O+I+qO9OKnmmD3B0f3cOFINDW5lFxDzbrAzaKpj4.OVW+P6JFmXoZxuL0kKxjaRQUJv1Pn9w3Tc2tmeVbtLAQtXkf56lhFEAQyz.Gn5YQjK2iFHOtkaRIRmvVY41c.OKd12QGiDdMppDB+353COcOmVIdA5SAjVGECBj0EoCg1BEOAAIOLijdqW63B87vIzEiYBpPhE37+MCPyDpFcaXyRWrgzzcK2L3gt1ATmYxzgsreCm3gKNYCSS2mVPpDTtwx1PWHyDhnqogSaNjXpzFNwMGRwXcXQO8jMErX7XSAiwv5jfOH5JndjjIGIABAQ1faLVEVyrfMrQSJIQ9ALEW.ZWpfa5pOR1JS4hKqLcacsnY.cxid7bwnoayKuxcd4GFYkXokkDy9iptd93WBHTFuS.QvaclA0onm.XH6Xl8pp1ll34UD2+w.8lVp0Lz7xzdOuAiM+BdQU8TpLwkWpLEPI5FlhJXXcomaWJuR9UVk8ERwNfcs1VV9EWISe+NGF4zWxfyUTHAlK2JY5PTY4uKprgdvtj3tFmiIKL4lWtPx3bOQStiRLI4N79btrqKLBS6S1XaZeZOd572EO8HKd5TTbl8M+EmhmtuW5NRZeXQCRLND3m4.UomltLn1FmRQHnedcfWClsc4bOvhQnKuhv98Dajmi3AfBYJHP5zdvS6z9zSJe4EWQgFXRBv9RsF+EQiVeRZe.54ENmFqFgxvcHxI0X0KjvBOeKjCTpvLIcC3xHIFbypjMevQHN3q3je6VYUFLZaDcPfDdyyX643notxUxTOY7yTmLrwTS57YVMtYR22GYs6Ln65a6KE9yMdSnoZyXbzIcIhjo33i4aOoIJiGYM41RlRXiPrMQITGhsch1x8czCOHxma1Qz6xRQL.hj.cr+kWYFMHBO+yxDzzs6DH2SvlzAdG6Y6BTScU2kP0lEEW1qeEARi376Az7yzp46b30GdThtNOA6IeNmCEWd4VrmDXt9Y09TfV2HBsb0sjRNAMCZR6xGSRZ2kUenGIpibtjERTWfKoA8rYMBRZTejTtjAuDSbl2t6zWMpyPWWKHOCGYOEyDCsgW7903n6Y.qjsPVzVpZeuh8ZuLsd+eUQ+92+o+RQY4vb0S74wk59PUc5g.uiZ5n9SPWRfP6nijt3OX6Nn+2Mo.AIWcTq02Q1h8tkGM700ooLSaYVvVVMRyt7WtHJoOUSHVdhJHcXNIqNk1GuLvEFFROYutOq7E4jegA3EQDRCVYHKBmlrn6kJbpYvLZ1APR9PPvM9RZ0Ki3b3grsdcc7HK2Ivdbz93g.JwjNXe3CITUoOQU1qGez3ugbT9tlAz4B.Txob55UEkcBPu8.l2CTppc5JNHKrgBThack78IZJ9gP20W97UFX64GwKsCQ7otzU9MP2Z0JLFODcolbR7Gx07e9+cs9Cmoe1nWGQbfwobCes1i1gbccR4O78LAWf4xxaBaXnACtAa1D5clusy09MRx7A2Of3qBvv6GvuOH3pGsKWOfSbce8.pvOxQZKm3cnlecKwtSqRnWX1aaD6w0uGTLnRtdNSwxpVBCFpbttdo0Hw16ZEHhaz2K7BQf+FestoGjruNE9qm1vpywW8n41HDb2sQ3P71HLY.MVw.eY6DDOJgFeajocU05l9ix6kP96Y31te.+oEKYXAUcGcWQfx8o75c3uh.Se63BTOws9KP8qlEJx8XLPRecrp50wbTSUy09UZz6fKRZvH0f3aKx+maHIXWb4zJRMBCsIqTMjC7WooE7QL04mI2.7L4GfmYwA3YVZ.dlkGfmYkA3YV8BeF7Zm3qDuZT8eTEk2hdKtK2JM2xIj9+PhUHnV
                  

                  Actually a math sqrt somewhat achieves this , but it offsets the cutoff point.

                  HiseSnippet 3326.3oc6cs7aiabFmzxiskV6M6ltMMEnnPHnG1.uQPTxuD5Aqc8irNq7ZYK6MonAXKM4HaVSQxPRIuJA8VAZts+CTz+.5ghhhdH.8PBZAZuDDTfdp21doWJJPPA5414EEmgRxRVVxlxw5vFOO3LeyuuGy22GGNorqsFzyy1URN49McfRxyBpzzx+30NV0vRZq0kjmArOzyO8xROpoipmGTWRVNw6haUN4jRjee8pOR0T0RCFVkjzyrMzfkLpY3GVa4hOwvzbSUc39F0358BE2Ry1ZMaS65HJIAHqjip1IpGAepJtaS.jjmZCcCea2J9p9POI4IejsdyJGaepEs+Oyvy3PSHtfhTEz.QqdSaScLEiqUZsiML0KGrh8jPCZ4v0eB55+dfsMzMZUeHNbGRCoCeBd7Pdhyh7T3Iur8M4IwQcSRoNDQXqW2T0WjxvrCVCF1VBT1VV9PKOC+l7rqqTx8tfxF9ZG2Y5chNPuHF0nldYL+4.aTsJTyOjXmDr4GLb4zY6jfnb41TDecPYaylNGaaYnsogoOzkPPIAzBJmg9njzltvOpNzRK.EKl529KKtKuH.B94T.eyh6VW0TD0K9HCGaSU2nbjWs6m8q97nvPhtCC75icXoOYeJ17FfVKpzWDY8D8GCqGLoaSoT.nzl6vTBQ+U5VzsRuDpe0pQ4Qo+vW9eVEaabqPVYwWV78Ua.qZ6ViNggqqRviPSDeM6Cq4XirdqwKITolss+wFVGIZw8dEKYa6rgkJZoqyOHkOV0CtS0pdPe9gYs5d910BnEhI4J9Pm0U8Ukj+wfkVHC5W04w+ag0P+S9cFNkkFdBZSzmBZeKBmrEKCySi4VToTrf5QreO.rEqziM6Y8cALigDTd7gtuMX23EwxradKPECKHwSSlwcb4zX6KoeWnEzsManQ1h6u1utb5z2tbtilOZ522U0xyw1i2V6mWAVyXeaKLhDNaG3AwBC6ggVASk1ptcroud0MQKxN9LUT8q6R3QOrlccq.5uX97+qUkSz27jygquSdiquCQ2AdMJMNM3gOd8J6wLwQ96zaX0.ZZ6.Ekl211xl5aGuXvdPeWiiNB5xSwcbY7PeeTDRqU2sgfFv5PM0lsUKsysWSIHhz3q9wHlRaCWqJd0mVrBxMfP8vexm88+NewdPSnpmfl0FZ1htWdtf8drMNnOEMlCPWjoI58wcyzLZkxQh2D6r.hXw3.t9Z.l.6XAvda.SWZb.ZOyn3SLtEE+fuK.eTE2kEiFnxwpNPzThm6aQKkdyOPLlPlU5+LPYARvSb+Zrih1OsTgGaqt6hqQJWYwSeZgFKWpzJzx65zztPi7GVZYZ4Bqu4KJ7XsmrGq87qTUoP4mToI64OrxRqOeiE22k0+cp5u67k29IUVhV98J7j8leeu26fvm+YymY4cxvJqc5t+n4qt3AVrmWLXsF6H8HCUuRvpBwLhqaOiiNVnxGipnLBD32unj8oBU8o+shh6eTr3NMftdp0bLQQxxqCv4U3W7keY1h6A0qK5T3Cq6aeTjziP7QbKKm5Bj15tFh6atswKDRxIg6QS+hfmfQ8Paf2bSZO659nU31pH+.PyM3o0qUA4fpFDIKaYAMQCNPdBrSlzxYwkINPBszIE9enerFUvkkYMpDzXGTvSApn4Z33yjXmkULpHaBZ0Rx+ZvFVGgbkMilKDshW2y4oP+SscO49u05UJ+Vu8ObtTykpZcKMrcgzNtPGUW391kMUadeBSDhb.F9fzGZZqcREiOF91o9jTIS8yRkl6gHD4iv839ZrEe6cC6Aukuqs48spW6Pn6CR2P0rd330Vdii2rF7hAh79WRhAnD+LY+M5uvbG..gw3ZIZHo1TUCs7ZVVEEIExnLJlF79cP2LZsr9ME9ITjPDbHol.jSpDBaiTYVI7vxGUzZ10pgIIbFeX+86animL.He1rL4i8PbU7lVaiMqCxgrYdLVm1UsFjprfg2PQI7.Km.AuNPWeCHFdwyKc0RVWSiI7oAdHEdeottFoMOZVXcg9.T5KI0EyfrBfyBXO3DWpvOe5l6xBYB5BYF7BIEnlsNkLEVE2iaUzpGixEROn4jbz7b.aOMTn8zLEzF36ByD19kK3KR7j3DwkP9BkflA+C7f3.pkdF1VEcpJW+PSbrfDiOgNUsup6QPehaNgJS3IHnDVRDEfoqe.xssgE2vts5KZUZAzh9TnKK+H3VOvwgq7BjL5hMGyrFdB7TJrRKSMkP1XlaFj5GRA.xlQgiXlDnrn.0PvMdxYZTEnebjDcL3IpTnZxkqPgrKxbzJLi5r4IIHelUJjcgk5OxDuJEHxkh.YJBzHoC8FylkPWoo47galj3rjjB3YbTNjJVDI4aCpg9uYXMd4JFyqQpDUirmhnxChHpRODQU3f6oPb+rcFwmFPGQdwTNvF.pU2TDmSQwYb8WYXb1wYLN4jIl+W7F+8u5urJOROEFoUheP8ESbN0UKTi6Y9BsQxsaTA.T006H3iq+F47ASN+St2u4c+Ge7uWPNOIvEpAwQOFwODWZPCYBZN1.5s4UxbfGpquucEiirTM42l574YxUIqJEXSHT+Pbpta2xOyOWFiHWrhQ8MSVinwpo.dejajP8tEy6GbCBXOMP61XIxI3YHznuOCVh7CP8ncVRXdoDxX3vwlkbhPrlKQSsPbty2AGty8RG4P+v9FxCBrO8yWkmMv8xj5jIsfAmWUYZfCT8jbQYHj.qvsbUpgzIzWVt8MDmEO6aoSDtZTUIjAgqiObgcbZkHLnOEVZczXHhvcQagPagLuffVFlQ1rwKbbgdd3DriwLAgLwBbJSy.zLgpQCKdVp5Dooa19evCknCnNSkoCoP4JNQPmcxellF2bPpcTtxx9SWHyDhnqogStNtCAtk3lAoXrLrhfXKIHsEhGAoMFCqSBdGkHlC7HI2ORBcB7zD2XrxMyYAqYilTxKVIXQw4v74xYytZijsyTt3xNSWW2KZFPmrnGO2LZ51rxqbiU9gQVhVboHgXopqmO9kPHkw6DBEI5oTzSjMjcr+ddUaSS77Jh6eOfdSK0ZFZdYZumWg9leFu3vdxUl37yUlBnDMfonLFVW5Y3R4Uxu7JruXM1AdrUXY4WX4L886.ZjSeICNmWgDXtbKmoCdkk+FuxF5N6R76Zb1mrvjMe9bIiy7DM4NJwjj6vay47tuvHLsOYiso8oc+oyei+ziL+oSQwY12fYbxe59dq6Ho8IHg6XkCg0ybfpzS2XFTaiSoHDzOud1KA01tbNTX9HzkWYa+dBZxyQ7.PgLEDHcZO3ocZe5IkuzBKqPcLIAXWoVi+BnQqOIs2A87BmalUhPY3ND4jyrxYRXgm2HxA7UXljtBLYjDCtYUxlO3HcG7U0xGtUVkAi1FQGLKgSB.VeNNppqbgT0SF+T0ICaLUkNelUhapz88QH7FE5t919Rg+7uWGZp1LF6cRW7HYJt0w8ZOoIJiGYM45RlRXiPrMQITChscBCy8MzCyIxla1Qz6xRQzAhj.cr8kmaF0IBO+SxDzz06DH2SvlzAdC6Y6BTSMU2EW0lE4W1KdNARiX76Nz7yzp4aL30GVThtOOA6IedsCESd4VnmDXt9Y29TfV2PEsL0snRNAICZR6xGSRZ24UdnGIpibNwERTWfIoA8rYMBRZTejTtjAuDSbl2t4zWMpyPWWKHOCGYOESECEvKNdMN5dFvxYKjEERU6wJ1qXYZ89+ph98O+c+ghxxg4pmXyiK08gh5zCkeGkzQ8mftDGg1RGwcwe.8cP9uabABRtxnVpuiKK16VdzrttLUkYRKyB1vpQZ1kwyYQI8oXBQyST.oCyIY2oz93sANS2P54xq6yJeQN9WnCdQXgTmUFxrvoIa5dtbmZF7BM6.vIuKH3F3Is54gcN7P1VutNdjk6DwONpebW.kXRGDG9PBUU5STk85wGM1aHGkuKY.ct..kbJmtbEQYm.zqOf4s.kpZmthCRCan.k3VWNeehlheX5c8kOegA1d9QUS6PDapKdgeCzs1sBiwCQSpIm7O8eu+G9x+3+d09CmoeFuWFdbfwobCeo1C1hb8oRWe368CNGykkWG1vPCFbiBsNz6DeamK8aHl6EbeMhuZFCuuF+1ffqB1tbcMNwk800nB+HGosbh2oc90sD6NsJgdgWdahVdb86NECpjqmyTrrpkvfgJmqqWhPRrXWq.QqF8cBufJ3uAdqa5AIw0ovecAGVcN9pGM2NjfatcHGh2NjICnwJF3K+n.+QIz3qiTsqpV2zeTdOQxeuO21803OnXICKnp6n6JaTtO4WuI+U1X5qGWn8It1eg1ewzPQlGiAb5KicUuLliZpZt1OWidmnQRCFoFz51h7+IMRB1FWNshTiPWaxJUCY.+4ZZAeDSc9YxM.OS9A3YVX.dlEGfmYoA3YVd.dlUNymAu2I9JJrFU9GUQ4Mn2p9xsRysbBo+OXt9lOI
                  
                  1 Reply Last reply Reply Quote 0
                  • Christoph HartC
                    Christoph Hart
                    last edited by

                    Yes, actually a math.min and math.max node makes sense as it mirrors the Math.min / max functions in JS / SNEX.

                    lalalandsynthL 2 Replies Last reply Reply Quote 1
                    • lalalandsynthL
                      lalalandsynth @Christoph Hart
                      last edited by

                      @Christoph-Hart yep, that would do it.

                      1 Reply Last reply Reply Quote 0
                      • lalalandsynthL
                        lalalandsynth @Christoph Hart
                        last edited by

                        @Christoph-Hart btw , is it possible to tempo synth the osc/lfo ?

                        1 Reply Last reply Reply Quote 0
                        • First post
                          Last post

                        20

                        Online

                        1.7k

                        Users

                        11.8k

                        Topics

                        102.7k

                        Posts