Creating an array from an image
-
I'm currently trying to get the alpha values of pixels from an image, store these values into an array and use that to scale spectrums (something similar to the jitter buffer in maxmsp), but i couldn't find any functions about getting values from pixels in Hise.
Has anyone tried this before?
-
This is actually something I'd like to be able to do in the c++ side of things too!
+1 for image analysis.The reason I didn't suggest it is because it may not already be built into juce, in which case Christoph would probably not have time to implement this.
-
@griffinboy
I found a weird way to do this, actually we could turn the image file into a big array externally (by using a c++ or a python script or something else) and store it into an single channel audio file. And then we could simply do something vary similar to a 2d wavetable, just read the rows/columns as cycles and interpolate between the cycles next to each other. If there's more than 1 plane we could store the data of rgba planes in the same array in order like this [a r g b], and then read them separately by transpose the index. This will also give us a Z axis so we could interpolate it with both data from rows and columns to get new values.The whole structure will be like this:
I wrote this simple demonstration patch today
HiseSnippet 5828.3oc6bsuchijdG2yvlwryrYm8jjyI+Wc58blfagkk.CHld6IsQ9FtAKY.eq6i2cDHInrERXIAFX8jLIuQ4MXdT1Gg7DrcpKRnha1z1t6LYxpdFrp6+9tTe02WURR00oogmmiarURTeXWiXq7kwqMz1usbaMncrRaiynTGsVFa45pMLVwgc077LzisxJe1d3ZrxpedLx0+8+ZQMKM6lFQYEK1INvlFkgcf9Q4p952.sr1US2nNrCSs270kZ5XK6X4zCglOKtPrtZMuBMxGpgq1yhGaeMu1wV4EwapIjyrYiBlBFoyap2HeCiMyZTP2nPNolYMkxJkIsQFobwV4WsiNz2wslulugWrU97hN5Cq014Fa5.bBzC1vx.mPLVMzHSydWGKcLIhyMlbanktZHaxKFpWTiXZeFko8ODuBTGNN+Hl2ukT.HpErLvUd1jv6yl.dhrvSfAdyARqv.o3TH80wq0zE10OpDLd90wKY6a3ZpgjSrP4vdcpYA0MbUQ7bDThuxmgDIzdH1yF8GhK6fZmsOeGsqL10EkXb+jLmfPJ.5m0dYhDI1Xi0uiqttFc0bM.djwBKe8.eCvDZYf+quFhZ8tq1i6eKGMcbKRrK5mZC87M5viyamAZc5ZYrEhj78Rh.CRaxyGzWyErUOcnCt5fWA1wtEz1fzhwY6gHFGUGGqjq8NgKXaoYcmpFZ5n1wLZltNcpZXZ3ZfT2q46BsakbbekhslQivX7znmIpknNLnqoHwabMSRYiuHw5+R4JA3C5JAa8SuMnxV0qV5LPRMfGhQijgtsZ.bbAZVcaqA5hr4X.bLAZ1.H1N0ZKpeE2FrU0pacNpmrAZX1MQwasDef36maWKF9MG1zxnrgcK+1exPiKd1hqyMdIGr129nPO451Os7x2sEnHPFrMXGvt777W.RAd2df8Ak.G.dCnLNqT.zu2O5eUz0+qqHb6RyPIZLkr0MF7sOVz76+8TcAMKKfGwxrG.ZCbPyVIixbgaRA7zWFg.J05q+c.YbKDlo5r4HxZ0f49LL2u4cBWcMeMfEc5BRpkVGzQCYbe.3FnNMqolPMWJPDSAL5LrTfXjpw28cX0sIHU1FcHnBPAnBNBTETCTGbL3Dvofy.7i+2ES1UODkijowXkcnXvZ5YUi98QW2tDpW2trJsQZc3wecPxLXbwR1L3JybUuQVbPqbubX416w5USGqdcr8RNbrAr4x71DCRdl+w.xMW54fO.PhLRsGRpUKz.UQjdSEP8wFmlGZ4C9kEs3LhLkM4rAlku+ft+CSAbdC9Xd3gKmcFpzhH7eHlmNDMUlw7jgVy1T8QukEvKw0e7wab+trO01.1psONuNZCXlMst3SnqM29wbEpG.bdp7ONjz9+JtG+o0aoeVCtORnaQAJ7fgVFTPLZCHSUS1Vqug8+hOJVEjImNnHpMzuuNt+GK2zaX3eiggMMFJujiV6a+YdnPXi0z.9P15dm.WRj0Pg0EW6EcsfOgpDA1XwAUN1JaSz5CO4WhSPAKD5NAVJbt+dzDEXL1EapHEP5909XHJROEzcS0JUiTZgC753kwAfMn4C1XYl7e6LlFeDlLtCOiyrLb8Hd9s2eOh7i2ETzEH6B11k5T0Vs.EaAjaA1tUPFM.Ea.ja.1tQPFZfhZ.YMv1ZjLVFGXlvesKRrHSYznJtcoL4d68myclwhbgbtlCQylB8xinebaPnO2hzTl4h5VFxqLjqLIgqMY3d.XjTTbpzomtBYlLYj0BFGAYbBTGZR1bOefmQSenisG1VfeaCJcLG6Ae.yP+XdIhB2FuM8fjP.G1Ll.3EnYjv0RAzr0QjlugaWGKMeiGrsRp4WhLAjD20eKvn02BzdkPJf6qDSAZ8pzo.MdUlW9XIlafHavXldSGWWCutN15P6Vj8VZifPzl6VF9f8O3iYs+YzERMswPvVVH0iOLB9WL6G8K1fbPEQGBANxJlM8O5jP1FUvVQGZPSjkBeisr0qZzB5glLMYMSJLwoNLYgEW9tQ7N5lJZP6ktiRi5HDcZ3WUytkQhonK9vBRJvmBHh9eAdA7XOEvWx5gQ1Bq5FaXAsuB36.VHuVDwfBOkoVF9xNcPS4QIR9bl577EvZRuDMN8hZblknwYd9DDrHuK9.fp6P3yyxHlnxouiJu0D0LycTyh3CFZiMHGRFCYTGmdw7NZwOmHBZzy22wl3iHxfpgO8.2R.sQxFCfYOaxhcH+GKRpnHtGccrR1Lr6RgFQqdFqk3OmXUZGyS5H7YVsZhUQcbR3qDdI7OvrQoT.WqolkwtZM8cbWW7kPNt0PcQXenoqStS0AsBERyQfn1f6ye3kIP+27or.P970vJcAPUVyxpAhekbZZfbnZ2ygSFcExJ7VVKJj9NbuQC1eaZTDafVuJ7V5pV.6dcZX35wHCY2W4WAxJl9kS0izlf8Bg5eMSaIYbXuNnFJNcyzctw1Cy4AlDVOQzOsBzzxGbGka5dJvWr.b32Vym50TWTJKGmtL8GtpH7nhrF0DE.8bfUKrpWaiYopo0DQUTMf7RZlJjRwpNIV0xAAYPWJkaxGvhCqCQez0vumqMoN3z+v8iC5N+gkYd3iXLrBABN5XLOTR2vRBJYjkyEwHsWUZHrKh7dYTkaRIuJZ9s4MQ7Y2jgMeClwYMVps4hn1wmL2Fzc4lPpfYnFbgUQ0ZqonknsUjdKZXREHpoj2Fu.+qH4JwpBjqnMVibbGzBAAkQ+yEfvJiaNZo4wDuFhxe2EXZA2MZ7nAUykg4zfkQQO9f.VUGncx4fWVNqmulqOwfCpQzV+BFxkolF15g0KpQbSWWpsunJfLBF1vWxwAIl6ZPzTQR8JZsrg98zMRBSENeACtU03g1dFt9n7aDX+KRxp8AHVSR7PmSjLim52+ZKTTW7gIpCkZAR0IE0Ax3Ij3yHpepkzbh++.YcPrOaLuiuPiJ+mqjVF2tYlVa62tFp8krIlvlu7FKTPh7wQ8HRkgQ2N8z7.YO6etXllR94oa997HDVyiyQUPX9R9PdviRVypzrtHGEuexT.V94+TshhOAZEBhiEszam1h.MyI9yEyzzOpZEg1G9EmdA1Ydhq4d3PrlJv1oE6nJeBot0clJVjhI8lLiTSltXJcRt5j6otCQWQfw2eq.ZaLaXUuYi6j..rEQRG9N3EDJepZVblZVLrlXNvOLES.SkZtL6xElXCNiis9lhyxGlh3mng2KmXxzxoHreVdRh6hmLUqYIzoFHDE+BReyMEhvEjTjecZHYgJJ3oPeTYL3GURRzZ2KGhDXwD7kTdQgYL1FBcdFpB0PSWBbimodujtQaSwMqwEwKIiClCxDDILEbCb0lkaxwz2KjyNYkh3xoD3mgQuzQUdBzqmlEbjg6xGUIt2ESKkBaz2wkIJKUTL.VnRJhXeWsvn+mnV3MAXhLv7LUMD6ppSOejFPxPMfjsHg3SFHr8W+1PObOWFKpJ5zyV2irWWzZ30sO9Vz+0h2DZYskkUxvVj74MZQejteNVEkv1.QRRDRFuY.snwwiqaR5e7HOosmXzbyjuCIBly1M0Z7zl0R8nJlSfOaJQ9KHyiVkRGUMZ5m7cvTBoBolSwOHXIWiHQDyJDXJJwODt6BDIUCKzXbZanuwhDWEGWikSvEU+YDgQE8KKg4SSMBDmarAq.UHEDK7FKT2m7zyPkpW7nD+HiF113ynn+3Y5Lp.zGVGpQfEJ2YqDVXyl9djvANOEI1B46DEx0dYXEHaZD1oJbh2gXDXRIEIg3LoFmf49M1.+6ESzgM60vPE4zkROeFZit+z37SRGelpg20ui5oo6BwmGkqlUxtuCM.ftuSj7aZxuYtXs4NNkrqtLiCpZO1wYukab16wNNEWtwo3G93Lu4h3CWqnKVw21vyKJarkD7tulcMZ6oZSDjvH6RMgfDoAGXFQjWXs6eb2B+f6ONGWC8TicW+M1NMdazjX7b30VLRPR2TSHpebHokKxenEik0E4uO3rWpIzHdbvoA1uoEilz2KZJlZB8lEglkGQCMrrbtAqdHMw3RsTlUfCCxyY.4KxvmNKxtQpLoPQ3gTIIwLROJHxw6N7JTKdZAQp.bb1L3.AgTYlCHF7zCBtoEWuHS5Thalc84kOhCEfpIw0nw3JbIlk2WS5Riz862vy+CxeyvSF8LlEuHbzEtpEtTxYLMmyRhT1cdRRPyjjDe2qDB1dQ7QVRdVVI4SnBJjHERkt3icBsb4fmmhc+2oucUXChrA5SizeC5NlPdLZw9hD9pXMSDyfs.eCnXhUuq.kSr5TYkZ5bJlBGzd3loGAL1S6IEyN6GDgA3dImnSJH0TG1xZLCYwOcC4L6oBQKdggbRYujmHE769FtRN.4Dqd2wiubL7YcIDkIgLWeV5d9HeLjnGT1pKYzvKG9nm34xhITpoOcNJLmLLN7KUINnWbYKJ5.15LgSkrEPOt0D24j74eZqryxCcGNzNx4SYG476zNB4T5muYjz2oYjEQUK7.jCFsESPoW.A81oHn2dmDTl6vvXlmdJJycQQYlfhXtXv0gN9FJ1IIHHwOj.LcQllysrfd1xvctEieWucuqFljdJrrzOthwV4ym7kjN9heIoYeGtaRYPLUDOYE5qz0vdQuY2wB3pwhsxWDfJzv6Sdcp+cAuN0QSoiA0isxWEm4YBIFA53Wd5+5JwhgWII1y9udV7rho44u7nqywq5a0WlWpfrBuZ+Cyy22wsur4tGWTg2O2d44UOUCk1WZKE91CJiRebmaj6uYtRJ7keyf77k6XLTl2cyJJ7us9v77ib2dnbeuRnzibykmucwRij6O5xiT36jaOI9hBVij2endMT4EqKwef0kBx8GXdhBe19GKwq6lEUd5AUUL42rhD+9mWAUd95nx61osDes7Bhx6eYZck8K+lcJX50XXF4h4UtRY+JkaVnu6AkxJW28DGkQmw0ofpUK6rxGWZ6qU5OpkeA9102NmrssrmhsQuzETOH+04j253S6ob4HQtB1iNbm7xx61quxgk1cGNdug54kqT6pAJW5zqLm44CykWN8IGMRw7MUpw0WVotDr7kWInzs+NmxwmMWSI3QWmUPw+f9nzMrMjjKqwInLP3fy35qZcoD7LWOQkK22PiKyUM8jf84FHpXsqrFm8MkbQk2ounh3o7nxGz9ZI4ix1UTonPi2xcVmycjjGU3RQEa2cdKm8kCsjjyT3XT6aT5bt9U7gRxUpVVTY6dcNia+NYMkfRRYDTJXk6Dt8eyguUBtSZDd4EN3DNdcySkjUt5sBJMR25Xtypz7XIXU0pH7lVrNm5YiNRB50kajxkGXTiKi8ApRxmO3PAk8qk8HtyL5kKOrlakQJcKebUt8OL+NRvcKUBkt+kJbps6HkGVw2cnxA816PNjlkPdYeQoAJ6mYzAb10zbxC0S2bfR+iKVhKS0CZmGd0gGgJ+Zt8Q0W2HuLcZ.Q2+yn59+lIz8I58+cwIV7C03i9hOD6ALwI8eahyeahyunl3r759YtCce0VBk4N6vVHrWsj4HkBuoXct9JCNVRVzQEwKNsTUNUqQ4yK6AsGpjuLuJ29WcbEjrXGT46qr8IbpCapKI2cmcP75cGVma+baVRBN7xNiPklsJ2YbNmHA8GUTTIuu0obl6cIRWoUuMQ7lA0P7V8RmJAg00ETJepPcN9aDqJA6dplfhqfzwb7s6TSR9lpEFoTV6zi4rgZmKIeVssDTpdLrFmsnklD7vS1STo74H7vqb1gRP6BuAU99pmxclq4gHcgcuFMdEPxR9NPT+co5dBJucTVT6GrYYIXO+9HYqXODdGnpHIevgXY61bpb74b7Pz+YVCTNQLWEt9cFdfD7.jbSIyoZpbmooNJOrSt7CTrNIaINd6Q8xCKj6MiTZebspb7E2UVRdaNwgJCxZWgKyw62IubsKGbihU8C1m6LKOjrezVWNPws4tGvolYzf7x417ngJlCyThyLeZMzbwhE5qT.obfveNk7vAl6dihak9xb629sGlGteFi9JGbsLp7tVUxCOogaekKMMQykqbIed4rVW2WQTsPQt96YLJmb8sy3prcgqGTfuzk54j6VSyGkVYyBpoycUNYs8x6oj47qGVP0c2cyIei1tHaEWMHSA9706kSNyg65qT1oxnBlU56lSVLikmR8ruwt.+9Vi1TtBJNAkxv7cJXltP+rx5bCcUT2YTNDMnZmSlmyAYKJidiB7cMs2T1qqoihpWgKKzuQ5cxJO7sGXqn1b3YELGl9pLyQ2+qBz8IQ7PT6+h3znelcQCpV++zyhmoPNd5EwBMe3kDeCspQoMk3UG5GktuD0B935WfubkyiRueA9F9FQoUKPsvGl9rB7CbSGk1r.u5aTEFm9xBzU.BSi3htksiR6Vf2V9znz8KPWgHL8HT+64FkFIkJdIy3ku.cEjw3miurxUQoQZM15GHNN81bzUXBSuKRKdSuzQzKmYe25YFm9.N5JPgoQqPvyUaywoQV7F0eTTZUN5JTgoQyR145iiRirJ.kLhRirxPVAaL+jS83h2Dk9sH7tW1nzM3nqvElVmi+frpQoM4LKHoGjdw9iPeDeI5VqFO3488t7H49bmI8iowYlSiQqni0risxJAQVfh1nqgqODGHyJaazG1zf90ZZ03aa3ckuSWRcCBnCMkYx4Rjf6Ii4mGuQqXCXGrgrIHewJFmwO8e9Z5qHNaNPeiNgersV8Wgx683BhxMMa1q76X.0udQf52DmMhUF388CdcD79oad8jvKFbZ3gxA+Yhx1mYTIT7rvK1jnlM2vCqDm26eOgNh4aLve1biMK0sTw6wH.JwPg+36lhB+K8llB+QsWS2Kgs53zylgx+wWGM.jmMHrmAOaFZ78APeJFRHAMetGKY9k2qq8QD2OdDCwEayW2Qigv+tokl+wYjlkdMlsi+3igOgTxCqZrkR990e8WOOI46mUlmISlYjjI9.B.YARxu2aZpSeFI4QKTR9DKx90e.NUxPO1OYzybzLW4oWyb0IMuTVqQf4kuHN49ENs6uzMPO6qiy7Ek4UuB.iceDMRK1DYgtFbzDePBe7fM8hjDiA6+3zfEvAD+3A3D2q2YKf6Fa38ZT6mZLqJer6PWfcZcvBMKg9wWsDNAr.ZP3+Hfo+kwIu2RTpeJd84ygWaXiqI9S4XYCMWa7WLQnWEG72uAMWT+uxyVJ6Y+0+56my5UyicLuUlRrn0c+6iOwt9yP8+kQrRv+3qa33hlAWUSG1yKJ+mOkj86+9Yjr+oWqgOwyvsS1COnaYYAhxXJZB7qd+xINWHU8OGeAmkwhnue75kj9d8LzGRn+wh99x60oyHx4mrdZVn82PWnM3AE+SwZse485c7B7FbZp7KVdp7qnTI8cG6SAQdeF62j0mo+7j1NoP92FO78yA6DzZf621ylywNexmfElxxNK5GYcO+1wrW5qR.cs9o.5gKEP+lm.flaQ.8+9GF6VYx.M80dXv7ofelmAlfaYk8+aimTF7sQANOFZ8OYHUh0fCKRe8+d.R+h3Ica0P6olax7MJ9yoQ89aiWwQumkl+jexjweXoCJ.hVZm86TL9qNrsGzeH6Gd5mruixKKD+53pP+lsmOFe1bvHJB5OFXL3qO8WEeGSSil9Q.7yiu6Yeb9TSGi9vm1pBIReTH.3ubzHalMMPitMZ8Zuv.VCRKfSi4.0Lr0IIvFbCJTLLFBbghgEFqiVSWm+TS5Vuf+9V+EjbPXxl7s.e03UvoAyY2d5f7Q6O0r4jc0LML8CsgYdnMbyGZCy9PaXtGZCy+Panz82PrKza0y2oCcZSrXUT2grGYqrxNDerIZqw9e..AlTtD
So far it works well, but currently it only does 1 plane row scanning with linear interpolation, the column scanning is implemented but I've haven't tested it yet cuz I found I need to prepare a new data array for testing this. The 3D plane scanning algorithm is there but the function itself is currently to be implemented.
I'm feeling like this might not only useful for scaling spectrum magnitude and phase but maybe also for something like partial envelopes, modulation tables and even maybe something like morphing between a sequence of presets of a synth.
I'll keep polishing this patch and would like to hear your opinions on this idea :) -
I would like to create something where the user can load images, and I would interpret them into a sequencer, to have a wavetable sequencer.
-
@Allen said in Creating an array from an image:
HiseSnippet 5828.3oc6bsuchijdG2yvlwryrYm8jjyI+Wc58blfagkk.CHld6IsQ9FtAKY.eq6i2cDHInrERXIAFX8jLIuQ4MXdT1Gg7DrcpKRnha1z1t6LYxpdFrp6+9tTe02WURR00oogmmiarURTeXWiXq7kwqMz1usbaMncrRaiynTGsVFa45pMLVwgc077LzisxJe1d3ZrxpedLx0+8+ZQMKM6lFQYEK1INvlFkgcf9Q4p952.sr1US2nNrCSs270kZ5XK6X4zCglOKtPrtZMuBMxGpgq1yhGaeMu1wV4EwapIjyrYiBlBFoyap2HeCiMyZTP2nPNolYMkxJkIsQFobwV4WsiNz2wslulugWrU97hN5Cq014Fa5.bBzC1vx.mPLVMzHSydWGKcLIhyMlbanktZHaxKFpWTiXZeFko8ODuBTGNN+Hl2ukT.HpErLvUd1jv6yl.dhrvSfAdyARqv.o3TH80wq0zE10OpDLd90wKY6a3ZpgjSrP4vdcpYA0MbUQ7bDThuxmgDIzdH1yF8GhK6fZmsOeGsqL10EkXb+jLmfPJ.5m0dYhDI1Xi0uiqttFc0bM.djwBKe8.eCvDZYf+quFhZ8tq1i6eKGMcbKRrK5mZC87M5viyamAZc5ZYrEhj78Rh.CRaxyGzWyErUOcnCt5fWA1wtEz1fzhwY6gHFGUGGqjq8NgKXaoYcmpFZ5n1wLZltNcpZXZ3ZfT2q46BsakbbekhslQivX7znmIpknNLnqoHwabMSRYiuHw5+R4JA3C5JAa8SuMnxV0qV5LPRMfGhQijgtsZ.bbAZVcaqA5hr4X.bLAZ1.H1N0ZKpeE2FrU0pacNpmrAZX1MQwasDef36maWKF9MG1zxnrgcK+1exPiKd1hqyMdIGr129nPO451Os7x2sEnHPFrMXGvt777W.RAd2df8Ak.G.dCnLNqT.zu2O5eUz0+qqHb6RyPIZLkr0MF7sOVz76+8TcAMKKfGwxrG.ZCbPyVIixbgaRA7zWFg.J05q+c.YbKDlo5r4HxZ0f49LL2u4cBWcMeMfEc5BRpkVGzQCYbe.3FnNMqolPMWJPDSAL5LrTfXjpw28cX0sIHU1FcHnBPAnBNBTETCTGbL3Dvofy.7i+2ES1UODkijowXkcnXvZ5YUi98QW2tDpW2trJsQZc3wecPxLXbwR1L3JybUuQVbPqbubX416w5USGqdcr8RNbrAr4x71DCRdl+w.xMW54fO.PhLRsGRpUKz.UQjdSEP8wFmlGZ4C9kEs3LhLkM4rAlku+ft+CSAbdC9Xd3gKmcFpzhH7eHlmNDMUlw7jgVy1T8QukEvKw0e7wab+trO01.1psONuNZCXlMst3SnqM29wbEpG.bdp7ONjz9+JtG+o0aoeVCtORnaQAJ7fgVFTPLZCHSUS1Vqug8+hOJVEjImNnHpMzuuNt+GK2zaX3eiggMMFJujiV6a+YdnPXi0z.9P15dm.WRj0Pg0EW6EcsfOgpDA1XwAUN1JaSz5CO4WhSPAKD5NAVJbt+dzDEXL1EapHEP5909XHJROEzcS0JUiTZgC753kwAfMn4C1XYl7e6LlFeDlLtCOiyrLb8Hd9s2eOh7i2ETzEH6B11k5T0Vs.EaAjaA1tUPFM.Ea.ja.1tQPFZfhZ.YMv1ZjLVFGXlvesKRrHSYznJtcoL4d68myclwhbgbtlCQylB8xinebaPnO2hzTl4h5VFxqLjqLIgqMY3d.XjTTbpzomtBYlLYj0BFGAYbBTGZR1bOefmQSenisG1VfeaCJcLG6Ae.yP+XdIhB2FuM8fjP.G1Ll.3EnYjv0RAzr0QjlugaWGKMeiGrsRp4WhLAjD20eKvn02BzdkPJf6qDSAZ8pzo.MdUlW9XIlafHavXldSGWWCutN15P6Vj8VZifPzl6VF9f8O3iYs+YzERMswPvVVH0iOLB9WL6G8K1fbPEQGBANxJlM8O5jP1FUvVQGZPSjkBeisr0qZzB5glLMYMSJLwoNLYgEW9tQ7N5lJZP6ktiRi5HDcZ3WUytkQhonK9vBRJvmBHh9eAdA7XOEvWx5gQ1Bq5FaXAsuB36.VHuVDwfBOkoVF9xNcPS4QIR9bl577EvZRuDMN8hZblknwYd9DDrHuK9.fp6P3yyxHlnxouiJu0D0LycTyh3CFZiMHGRFCYTGmdw7NZwOmHBZzy22wl3iHxfpgO8.2R.sQxFCfYOaxhcH+GKRpnHtGccrR1Lr6RgFQqdFqk3OmXUZGyS5H7YVsZhUQcbR3qDdI7OvrQoT.WqolkwtZM8cbWW7kPNt0PcQXenoqStS0AsBERyQfn1f6ye3kIP+27or.P970vJcAPUVyxpAhekbZZfbnZ2ygSFcExJ7VVKJj9NbuQC1eaZTDafVuJ7V5pV.6dcZX35wHCY2W4WAxJl9kS0izlf8Bg5eMSaIYbXuNnFJNcyzctw1Cy4AlDVOQzOsBzzxGbGka5dJvWr.b32Vym50TWTJKGmtL8GtpH7nhrF0DE.8bfUKrpWaiYopo0DQUTMf7RZlJjRwpNIV0xAAYPWJkaxGvhCqCQez0vumqMoN3z+v8iC5N+gkYd3iXLrBABN5XLOTR2vRBJYjkyEwHsWUZHrKh7dYTkaRIuJZ9s4MQ7Y2jgMeClwYMVps4hn1wmL2Fzc4lPpfYnFbgUQ0ZqonknsUjdKZXREHpoj2Fu.+qH4JwpBjqnMVibbGzBAAkQ+yEfvJiaNZo4wDuFhxe2EXZA2MZ7nAUykg4zfkQQO9f.VUGncx4fWVNqmulqOwfCpQzV+BFxkolF15g0KpQbSWWpsunJfLBF1vWxwAIl6ZPzTQR8JZsrg98zMRBSENeACtU03g1dFt9n7aDX+KRxp8AHVSR7PmSjLim52+ZKTTW7gIpCkZAR0IE0Ax3Ij3yHpepkzbh++.YcPrOaLuiuPiJ+mqjVF2tYlVa62tFp8krIlvlu7FKTPh7wQ8HRkgQ2N8z7.YO6etXllR94oa997HDVyiyQUPX9R9PdviRVypzrtHGEuexT.V94+TshhOAZEBhiEszam1h.MyI9yEyzzOpZEg1G9EmdA1Ydhq4d3PrlJv1oE6nJeBot0clJVjhI8lLiTSltXJcRt5j6otCQWQfw2eq.ZaLaXUuYi6j..rEQRG9N3EDJepZVblZVLrlXNvOLES.SkZtL6xElXCNiis9lhyxGlh3mng2KmXxzxoHreVdRh6hmLUqYIzoFHDE+BReyMEhvEjTjecZHYgJJ3oPeTYL3GURRzZ2KGhDXwD7kTdQgYL1FBcdFpB0PSWBbimodujtQaSwMqwEwKIiClCxDDILEbCb0lkaxwz2KjyNYkh3xoD3mgQuzQUdBzqmlEbjg6xGUIt2ESKkBaz2wkIJKUTL.VnRJhXeWsvn+mnV3MAXhLv7LUMD6ppSOejFPxPMfjsHg3SFHr8W+1PObOWFKpJ5zyV2irWWzZ30sO9Vz+0h2DZYskkUxvVj74MZQejteNVEkv1.QRRDRFuY.snwwiqaR5e7HOosmXzbyjuCIBly1M0Z7zl0R8nJlSfOaJQ9KHyiVkRGUMZ5m7cvTBoBolSwOHXIWiHQDyJDXJJwODt6BDIUCKzXbZanuwhDWEGWikSvEU+YDgQE8KKg4SSMBDmarAq.UHEDK7FKT2m7zyPkpW7nD+HiF113ynn+3Y5Lp.zGVGpQfEJ2YqDVXyl9djvANOEI1B46DEx0dYXEHaZD1oJbh2gXDXRIEIg3LoFmf49M1.+6ESzgM60vPE4zkROeFZit+z37SRGelpg20ui5oo6BwmGkqlUxtuCM.ftuSj7aZxuYtXs4NNkrqtLiCpZO1wYukab16wNNEWtwo3G93Lu4h3CWqnKVw21vyKJarkD7tulcMZ6oZSDjvH6RMgfDoAGXFQjWXs6eb2B+f6ONGWC8TicW+M1NMdazjX7b30VLRPR2TSHpebHokKxenEik0E4uO3rWpIzHdbvoA1uoEilz2KZJlZB8lEglkGQCMrrbtAqdHMw3RsTlUfCCxyY.4KxvmNKxtQpLoPQ3gTIIwLROJHxw6N7JTKdZAQp.bb1L3.AgTYlCHF7zCBtoEWuHS5Thalc84kOhCEfpIw0nw3JbIlk2WS5Riz862vy+CxeyvSF8LlEuHbzEtpEtTxYLMmyRhT1cdRRPyjjDe2qDB1dQ7QVRdVVI4SnBJjHERkt3icBsb4fmmhc+2oucUXChrA5SizeC5NlPdLZw9hD9pXMSDyfs.eCnXhUuq.kSr5TYkZ5bJlBGzd3loGAL1S6IEyN6GDgA3dImnSJH0TG1xZLCYwOcC4L6oBQKdggbRYujmHE769FtRN.4Dqd2wiubL7YcIDkIgLWeV5d9HeLjnGT1pKYzvKG9nm34xhITpoOcNJLmLLN7KUINnWbYKJ5.15LgSkrEPOt0D24j74eZqryxCcGNzNx4SYG476zNB4T5muYjz2oYjEQUK7.jCFsESPoW.A81oHn2dmDTl6vvXlmdJJycQQYlfhXtXv0gN9FJ1IIHHwOj.LcQllysrfd1xvctEieWucuqFljdJrrzOthwV4ym7kjN9heIoYeGtaRYPLUDOYE5qz0vdQuY2wB3pwhsxWDfJzv6Sdcp+cAuN0QSoiA0isxWEm4YBIFA53Wd5+5JwhgWII1y9udV7rho44u7nqywq5a0WlWpfrBuZ+Cyy22wsur4tGWTg2O2d44UOUCk1WZKE91CJiRebmaj6uYtRJ7keyf77k6XLTl2cyJJ7us9v77ib2dnbeuRnzibykmucwRij6O5xiT36jaOI9hBVij2endMT4EqKwef0kBx8GXdhBe19GKwq6lEUd5AUUL42rhD+9mWAUd95nx61osDes7Bhx6eYZck8K+lcJX50XXF4h4UtRY+JkaVnu6AkxJW28DGkQmw0ofpUK6rxGWZ6qU5OpkeA9102NmrssrmhsQuzETOH+04j253S6ob4HQtB1iNbm7xx61quxgk1cGNdug54kqT6pAJW5zqLm44CykWN8IGMRw7MUpw0WVotDr7kWInzs+NmxwmMWSI3QWmUPw+f9nzMrMjjKqwInLP3fy35qZcoD7LWOQkK22PiKyUM8jf84FHpXsqrFm8MkbQk2ounh3o7nxGz9ZI4ix1UTonPi2xcVmycjjGU3RQEa2cdKm8kCsjjyT3XT6aT5bt9U7gRxUpVVTY6dcNia+NYMkfRRYDTJXk6Dt8eyguUBtSZDd4EN3DNdcySkjUt5sBJMR25Xtypz7XIXU0pH7lVrNm5YiNRB50kajxkGXTiKi8ApRxmO3PAk8qk8HtyL5kKOrlakQJcKebUt8OL+NRvcKUBkt+kJbps6HkGVw2cnxA816PNjlkPdYeQoAJ6mYzAb10zbxC0S2bfR+iKVhKS0CZmGd0gGgJ+Zt8Q0W2HuLcZ.Q2+yn59+lIz8I58+cwIV7C03i9hOD6ALwI8eahyeahyunl3r759YtCce0VBk4N6vVHrWsj4HkBuoXct9JCNVRVzQEwKNsTUNUqQ4yK6AsGpjuLuJ29WcbEjrXGT46qr8IbpCapKI2cmcP75cGVma+baVRBN7xNiPklsJ2YbNmHA8GUTTIuu0obl6cIRWoUuMQ7lA0P7V8RmJAg00ETJepPcN9aDqJA6dplfhqfzwb7s6TSR9lpEFoTV6zi4rgZmKIeVssDTpdLrFmsnklD7vS1STo74H7vqb1gRP6BuAU99pmxclq4gHcgcuFMdEPxR9NPT+co5dBJucTVT6GrYYIXO+9HYqXODdGnpHIevgXY61bpb74b7Pz+YVCTNQLWEt9cFdfD7.jbSIyoZpbmooNJOrSt7CTrNIaINd6Q8xCKj6MiTZebspb7E2UVRdaNwgJCxZWgKyw62IubsKGbihU8C1m6LKOjrezVWNPws4tGvolYzf7x417ngJlCyThyLeZMzbwhE5qT.obfveNk7vAl6dihak9xb629sGlGteFi9JGbsLp7tVUxCOogaekKMMQykqbIed4rVW2WQTsPQt96YLJmb8sy3prcgqGTfuzk54j6VSyGkVYyBpoycUNYs8x6oj47qGVP0c2cyIei1tHaEWMHSA9706kSNyg65qT1oxnBlU56lSVLikmR8ruwt.+9Vi1TtBJNAkxv7cJXltP+rx5bCcUT2YTNDMnZmSlmyAYKJidiB7cMs2T1qqoihpWgKKzuQ5cxJO7sGXqn1b3YELGl9pLyQ2+qBz8IQ7PT6+h3znelcQCpV++zyhmoPNd5EwBMe3kDeCspQoMk3UG5GktuD0B935WfubkyiRueA9F9FQoUKPsvGl9rB7CbSGk1r.u5aTEFm9xBzU.BSi3htksiR6Vf2V9znz8KPWgHL8HT+64FkFIkJdIy3ku.cEjw3miurxUQoQZM15GHNN81bzUXBSuKRKdSuzQzKmYe25YFm9.N5JPgoQqPvyUaywoQV7F0eTTZUN5JTgoQyR145iiRirJ.kLhRirxPVAaL+jS83h2Dk9sH7tW1nzM3nqvElVmi+frpQoM4LKHoGjdw9iPeDeI5VqFO3488t7H49bmI8iowYlSiQqni0risxJAQVfh1nqgqODGHyJaazG1zf90ZZ03aa3ckuSWRcCBnCMkYx4Rjf6Ii4mGuQqXCXGrgrIHewJFmwO8e9Z5qHNaNPeiNgersV8Wgx683BhxMMa1q76X.0udQf52DmMhUF388CdcD79oad8jvKFbZ3gxA+Yhx1mYTIT7rvK1jnlM2vCqDm26eOgNh4aLve1biMK0sTw6wH.JwPg+36lhB+K8llB+QsWS2Kgs53zylgx+wWGM.jmMHrmAOaFZ78APeJFRHAMetGKY9k2qq8QD2OdDCwEayW2Qigv+tokl+wYjlkdMlsi+3igOgTxCqZrkR990e8WOOI46mUlmISlYjjI9.B.YARxu2aZpSeFI4QKTR9DKx90e.NUxPO1OYzybzLW4oWyb0IMuTVqQf4kuHN49ENs6uzMPO6qiy7Ek4UuB.iceDMRK1DYgtFbzDePBe7fM8hjDiA6+3zfEvAD+3A3D2q2YKf6Fa38ZT6mZLqJer6PWfcZcvBMKg9wWsDNAr.ZP3+Hfo+kwIu2RTpeJd84ygWaXiqI9S4XYCMWa7WLQnWEG72uAMWT+uxyVJ6Y+0+56my5UyicLuUlRrn0c+6iOwt9yP8+kQrRv+3qa33hlAWUSG1yKJ+mOkj86+9Yjr+oWqgOwyvsS1COnaYYAhxXJZB7qd+xINWHU8OGeAmkwhnue75kj9d8LzGRn+wh99x60oyHx4mrdZVn82PWnM3AE+SwZse485c7B7FbZp7KVdp7qnTI8cG6SAQdeF62j0mo+7j1NoP92FO78yA6DzZf621ylywNexmfElxxNK5GYcO+1wrW5qR.cs9o.5gKEP+lm.flaQ.8+9GF6VYx.M80dXv7ofelmAlfaYk8+aimTF7sQANOFZ8OYHUh0fCKRe8+d.R+h3Ica0P6olax7MJ9yoQ89aiWwQumkl+jexjweXoCJ.hVZm86TL9qNrsGzeH6Gd5mruixKKD+53pP+lsmOFe1bvHJB5OFXL3qO8WEeGSSil9Q.7yiu6Yeb9TSGi9vm1pBIReTH.3ubzHalMMPitMZ8Zuv.VCRKfSi4.0Lr0IIvFbCJTLLFBbghgEFqiVSWm+TS5Vuf+9V+EjbPXxl7s.e03UvoAyY2d5f7Q6O0r4jc0LML8CsgYdnMbyGZCy9PaXtGZCy+Panz82PrKza0y2oCcZSrXUT2grGYqrxNDerIZqw9e..AlTtD
That is really cool man!
-
@Orvillain
Thank you!@griffinboy said in Creating an array from an image:
I would like to create something where the user can load images
I wrote a javascript code that does this. I've tried to embed that in to this project though webview but I found out I can't send the array back to onInit.
https://docs.juce.com/master/classImage_1_1BitmapData.html
I just found the BitmapData in JUCE and seems like it does exactly what I want.
Not sure if i can do this but I'm tying to bring it into HISE now.