HISE Logo Forum
    • Categories
    • Register
    • Login

    FFT Analyser Path - Need help drawing the magnitude to height

    Scheduled Pinned Locked Moved Solved Scripting
    9 Posts 2 Posters 107 Views
    Loading More Posts
    • Oldest to Newest
    • Newest to Oldest
    • Most Votes
    Reply
    • Reply as topic
    Log in to reply
    This topic has been deleted. Only users with topic management privileges can see it.
    • HISEnbergH
      HISEnberg
      last edited by HISEnberg

      I am struggling to draw the magnitude/peak/rms of an analyzer to my path. My example snippet is just grabbing the analyser buffer from my scriptnode network and copying it to fill a path in a panel.

      After some back and forth with Claude my code has become a bit messy but still I haven't solved scaling the magnitude response of the FFT analyser to the vertical axis. You can see in the example that the signal level can take an effect on the alpha. Does anyone have an example snippet on how to do this?

      HiseSnippet 2775.3oc0YstaabbEdojVkHk3hj.Wj9yIF8GqbroHks7En3FIQQYITcgPTUoAtFBC2cH4TsbmE6NTRzFBn+r+q8gouH8MnnOA8Mn8LWVtyPtTRlw1IkvvZ2Yly47cNy41LaiDlOIMkk3TZwiGDSbJ84tMGDw6VqKlF4r6VNkVvscadCLuqylChwooj.mRkl8khoKsvbNxe+mueSbHNxmjOjiyILpOYOZOJOezFq+6oggaiCHGS6Yr5Gu9t9rnZrPVe.Jy5VwIF6eFtC4.rXYy35rCNsqSo661ppeExiZ4iwsvOm7rmsZqG+rm9bLoZP0mt5Sd9pUddqmr5SehuSo4qGP4rjlbLmj5TZtMYACZ1kcQjR.mPSosBIhWp5zDjrZ3sYgABUTLpSstzvfFY1nTGmRtMxsXyprX20ceZ.c334VtuPNAJmBSCXoYrg2rVvq5jfWAPpjAjlSAouzsoeBMlmOi.Oel6tQbRRaLrOYBE0Zcl4e9Ut0XvJh3k6gOircB7xPJ7dbkJO.sRkJKs1hnEifskTXKhf1mFQ6gC2tMeiHb3fTRxhucQD7a4kQ0XIDjOqWLKBXZpbXXaNkiNGmfRg8ZfAu.Ic3J2gv2hlFGhGrY+1sIIMkS6cu1WdOgHsHE7HE9OI.w0i5PiHk8SHfcTN3gs9yDet2XDEGEdJ.SflLsDDYsLz4cO87UxDWlVnQEpkDVxQ0Ksb.liKqFGXqRgFSQ7pnYXATUNkv2vmSOm3wS5SJZgwPnmAlUJpHdzaDbp2roQczP0zfKFA3hBQZl3UDf.zeDAGng9RkCIQc3c0hJgzAEhS4MXTX+D32qd8ZKluaG0l1oeBlSYQJwhs20Odmip2bmC2aKfxpkqrVF3Uy1b2WdvF6c5V0qswOBKnR4pqYO8d0OnV8SMYRkxUprp0p1Z2lM1aie7zM28flvBVs5JVSuS8ce4NGeZyZarW8gfvxLw4.3mjKxlxoqNpGhLFV3iQwPHa5PSUJsCDSrG4bRnBrZrjQmhcHebXXKHcGpMKAQh.d.6gKGPSUOg3cIns29XIUzHXHBpc+HeoYlEowj.vIrPuggaO..TH3RIISERJYPajmbBzK.8eogiK9kEVUF14RTO58nLuWwORXJYRTvhUDnW9U4ZpxnJb00frlVg8FE8iXW2Mhxo3P5aHY1.T5fTNoWglB5vU6MpRm4nCPnAjcleDqOGn0SVYK+cCMseLDTP.I5YLXt1RTOLTQFt7BWcAVyqrTz8APfhEHAknfhzWHSoiwQjvB04QT.uNip4gLv6B0h0OJPDux6RSE9z6IFdS4ndlavpkeArREIuZkWO5jcym7QiMoNYkTLCydkungOzQ4MHJ26o9SZ4Kn7taDF2E6U4xs0+dfYLzRF.sS41PiDxzfBQ7.zqfpSv+t3AntutPa7VDNTVHUyPTnLprcBqmNaIRf2BMxARJalCDuhsx8vc.Wv9AhZZBdJLz6mMlG.N4fVITyINE9Ox1Xenk.QdKHWw3VM67I6C5MTn9Rub4deS1XY6foLyuZH9hXJMxCRMZa7K.OIDd+jHyUUjgeGbT.jUDVFn5PAePAOmjL.z6KzjVnUuqjrlJhzaxhc2Qs8h.EOpH+5ZHJ56LpOoM0vve62ZmnKeMuh9ZfztKuRApmPlkEf5XlmPxKuhgQ3VOYkBmzOjkRZ1ukYg7hrs4wO1F0CXI8j45RybekI0SQbFpMMJPl6.bNn85Wb1xnLFnqzCtL8gTBznzI4be4IXcYLwOn3rnxGviPfWQO7MjDlBCiqKitEkKqB1aDEnjdg3VodBcC1hVB86z.vdsheCA1XDMYqphlhrq0jcFkZj5ERnIxLgXwb3rLugDfhkdNEZUUMVsMMD5ZlDn1bu9LxYkl9fjTt3ryStUxgtmxRVGPtHyCcLm3Q3b9NpYNDylwlT1ugOTPV1BVkv6XrHbz27Bzn9u1Fc6fdciqVMx7t3hdioPtpXfalp86FugVagncUmXZvItWLLf3ZBwW6mPP5HVUkmEKkJC.z69grNdUQeKhtDZY6QJDD4L5RQHQFytO5B60T.ACUxfSTc0Ndd..BlA71zOPs2gdHxaTVceHr59VGYXoqANCLKICwKCiBfMrAKccTZkwa.fDKeKH22KPSvG4si4VZV44RgfW6F8bGXujqrdarN9uQQZC9Iw6qtwxsF7I2m4gUe8ubpAK6ZW04uQE.nfHTin0.YIDtnq+BqTXb.iIbXEySk6yhGXbrbwnlZSA2WPQUhFmhDh7TGdE1wrwwuHhN1ft5i5nUl7iZs1hWYbZzCXbxgQfN81EWXQfciNU61ENm97eghyOVvz5SVNYB8h52qEIY3Yd0Kzozb12x172taYyWUgzXgrHg03vXh98q+ZBczkXE2NmFgvR4x6l6WouaN0IecnAhqXUeLXGI7MuDUm+vtaA6pYLB3IHmXRBmJTmRaQNm5STW52BtaQROCNGNHpg2YAnxJwdmrqDTbVRoTWzM6FubtzTjCLe4BZ.uqSI2R+8RNNcIzNc4h29GNRkbTgbs51DDxeo85CERCGSgb2QDxmXqI6gao0jO0U9rkHNd8hEwSJMpH3jKgmumaSQOO4Qspt9Dupt+huwwY7KZ8Kb2mEzODysu2Wwsiqm.bSstrUwEpFA02FXd64uCWFbkq8xfusP7KcaP49cKFiyT.FAGvODXTeE52wsNjWymmCv4b29ONs2Wdka+8k6pj+hZWJPlJg29RKgeP+dVWoapv2AbjbzWcdo+padRoXQR0DnrSCX8do3dwgji.PCc.CsbbVSHq43YxhUXZSwJ77gl9fnzzoIg27um9rBNpqTpCzXRBEhqbAaf5J4qoQmvFLiHBU8dEw6BGkljn.4K+W3mdxpCMXvjUylLOMoyAD9Erjyj6O5mg.dwlgq36O4rQXH6BQt.p1eE1Uji0fENHtKKh5KFRshLHtQO3HQ7LbtCN8XLMT3f2reJjIO3vHce0BROA1VkL9Sbgi3VFzfYNfE.SMu55TFH+FXPjin3.3lJpJOzcUARKWF4GtRMtfOYeaKkMBvYOYNsYbgM.iT5J2SwaPv2LBV+4t6ldhXVnyBmST0G.8QvSk0RARwRmWHMn1jIduiKV8cYJWLB0z7t.QYN4PxkYElFIzXzQD5QT.4xLFWGbbCfhmRxy7DZfS.3vIpDDlurIicVOrz0XpJFZlt4qUS9Yt+.9bh7yNI2890x2gC.0C8RBrwJxUV88wm6L9V+4NOzmCP33DbTJb7GRUSN2jzidLTCL0ZzQnXkBovZzsf1YirYsZHqUILEaClhpl5a1fFq7tqCsRXwL3cKNsOMqdL5O8292eecwW1fzj.Zdvgo9fgQXmMkRi9voM9AQkZC99uLFdEyg2AmD.6g9VEol859nuSL8mc8Zi0WP4i4+P8Efm61UQ6F577W98nXU.dgLL1jJxoTO5bRHDRKw3WAwvsw8C4YiZGStOKhkk4O2C3HBTupSGhkiUgJzFbN1+LSG5iHgDbpQb5uc88fD83j8k4XmJaw69Guuv8qeiqBtHQhDzOk8sOptYWaelydq5y78Ndm9dN+HGgB4O++mc5u1ExouBRtci94e+9iQ2qeLjQOreB6TeUS+hDFepbDPuijsusf69h2QEb0A8fROm56aypwHbkokvGMsD93okvUmVBexzR3SmVBe1MSnnyfM5yY8TwIP6RMpqZItjpSIYHiy+iaEPMY
      

      fft.gif

      Content.makeFrontInterface(400, 200);
       
      namespace MinimalFftAnalyser
      {
          // Core components
          const var source = Synth.getDisplayBufferSource("fx");
          const var fftTimer = Engine.createTimerObject();
          const var pnl_Fft = Content.getComponent("pnl_Fft0");
          
          // Display buffer
          pnl_Fft.data.buffer = source.getDisplayBuffer(0);
          pnl_Fft.data.buffer.setActive(true);
          pnl_Fft.data.path = Content.createPath();
          
          // Processing buffers
          const buff = Buffer.create(pnl_Fft.data.buffer.getReadBuffer().length);
          reg lastPoints = [];
      
          // Configuration constants
          const THRESHOLD = 1.0;   
          const SIGNAL_DECAY = 0.1; 
          const SILENCE_THRESHOLD = 0.005; 
          const DISPLAY_BINS = 512; 
          const HEIGHT_SCALE = 1.0;  
          const button = Content.getComponent("Button1");
          
          // State variables
          reg signalLevel = 0.0; 
          
          // Button callback for enabling/disabling the FFT
          inline function onButton1Control(component, value)
          {
              if (value == 1)
                  fftTimer.startTimer(30);
              else
                  fftTimer.stopTimer();
          }
          
          button.setControlCallback(onButton1Control);
          
          // Initialize the FFT system
          inline function initialize()
          {
              pnl_Fft.setPaintRoutine(fftPaintRoutine);
              updateFFT();
              fftTimer.setTimerCallback(updateFFT);
              fftTimer.startTimer(30);
          }
          
          // Main paint routine for the FFT panel
          inline function fftPaintRoutine(g)
          {
              local bounds = this.getLocalBounds(0);
              local w = bounds[2];
              local h = bounds[3];
              local path = this.data.path;
              
              g.setColour(Colours.withAlpha(0xFFFFFFFF, signalLevel));
              g.fillPath(path, [0, 0, w, h]);
          }
          
          // Detects signal level from buffer data
          inline function detectSignalLevel()
          {
              local magnitude = buff.getMagnitude(0, buff.length);
              local scaleFactor = 5.0;
              
              signalLevel = Math.max(magnitude * scaleFactor, signalLevel * SIGNAL_DECAY);
              signalLevel = Math.min(1.0, signalLevel);
              
              return signalLevel;
          }
          
          // Handles silence or very low signal
          inline function handleSilence(path, w, h)
          {
              for (i = 0; i < lastPoints.length; i++)
                  lastPoints[i] = h/2;
              
              path.lineTo(w, h/2);
              path.lineTo(w, h/2);
              path.lineTo(0, h/2);
              path.closeSubPath();
              
              return path;
          }
          
          // Normalizes buffer values to find the maximum
          inline function normalizeBuffer(actualBins)
          {
              local maxVal = 0.000001; // Small non-zero value
              
              for (i = 0; i < actualBins; i++)
                  if (Math.abs(buff[i]) > maxVal)
                      maxVal = Math.abs(buff[i]);
              
              return maxVal;
          }
          
          // Creates the FFT path with optimized points
          inline function createFilteredPath()
          {
              local bounds = pnl_Fft.getLocalBounds(0);
              local w = bounds[2];
              local h = bounds[3];
              
              local path = Content.createPath();
              path.startNewSubPath(0, h/2);
              
              local actualBins = Math.min(DISPLAY_BINS, buff.length);
              
              detectSignalLevel();
              
              if (lastPoints.length != actualBins)
              {
                  lastPoints = [];
                  for (i = 0; i < actualBins; i++)
                      lastPoints[i] = h/2;
              }
              
              if (signalLevel < SILENCE_THRESHOLD)
                  return handleSilence(path, w, h);
              
              local maxVal = normalizeBuffer(actualBins);
              
              for (i = 0; i < actualBins; i++)
              {
                  local position = Math.log(1 + i) / Math.log(1 + actualBins);
                  local x = position * w;
                  
                  local normalizedValue = Math.abs(buff[i]) / maxVal;
                  local y = h/2 - (normalizedValue * h * HEIGHT_SCALE);
                  
                  y = Math.max(0, Math.min(h, y));
                  
                  if (Math.abs(y - lastPoints[i]) >= THRESHOLD)
                  {
                      path.lineTo(x, y);
                      lastPoints[i] = y;
                  }
                  else
                  {
                      path.lineTo(x, lastPoints[i]);
                  }
              }
              
              path.lineTo(w, lastPoints[actualBins-1]);
              path.lineTo(w, h/2);
              path.lineTo(0, h/2);
              path.closeSubPath();
              
              return path;
          }
          
          // Main update function called by the timer
          inline function updateFFT()
          {
              pnl_Fft.data.buffer.copyReadBuffer(buff);
              pnl_Fft.data.path = createFilteredPath();
              pnl_Fft.repaint();
          }
          
          // Initialize everything
          initialize();
      }
      
      HISEnbergH 1 Reply Last reply Reply Quote 0
      • HISEnbergH
        HISEnberg @HISEnberg
        last edited by HISEnberg

        Just a bump on this if anyone has any suggestions! 🤞

        @ustk apologies for just throwing you onto this (ignore me if its too forward) but I recall you sharing a solution for mapping the magnitude (or peak value) onto an oscilloscope or path.

        ustkU 1 Reply Last reply Reply Quote 0
        • ustkU
          ustk @HISEnberg
          last edited by ustk

          @HISEnberg I've had a look at your code, is there a particular reason you are building the path manually instead of using the DisplayBuffer.createPath() method?

          mapping the magnitude (or peak value) onto an oscilloscope or path.

          I'm not sure I understand. But I might have done weird things lol

          Can't help pressing F5 in the forum...

          HISEnbergH 1 Reply Last reply Reply Quote 0
          • HISEnbergH
            HISEnberg @ustk
            last edited by HISEnberg

            @ustk Thanks for taking a look! In this particular case I am attempting to create a subpath so that I can ignore painting/drawing any values that are already displayed. I wasn't able to do this with DisplayBuffer.createPath, thus the subPath.

            Long story short is I have one project with a very large FFT display and users are reporting a lot of UI lag, so I suspect this is the culprit. I just cracked the magnitude issue however! This is the current draft of the code (though still a mess from working with AI on this, I am in the process of cleaning it up):

            To be honest I don't actually see much performance benefit to this method so far so this might be an effort in vain. The only other real benefits of this script is it will allow you to define the bins (I know you can do this already), but also assign different colour gradients, etc.

            Content.makeFrontInterface(400, 400);
             
            namespace MinimalFftAnalyser
            {
                // Core components
                const var Analyser1 = Synth.getEffect("Analyser1");
                const var source = Synth.getDisplayBufferSource("Analyser1");
                const var fftTimer = Engine.createTimerObject();
                const var pnl_Fft = Content.getComponent("pnl_Fft0");
                
                // Display buffer
                pnl_Fft.data.buffer = source.getDisplayBuffer(0);
                pnl_Fft.data.buffer.setActive(true);
                pnl_Fft.data.path = Content.createPath();
                
                // Processing buffers
                const buff = Buffer.create(pnl_Fft.data.buffer.getReadBuffer().length);
                reg lastPoints = [];
            
                // Configuration constants
                const THRESHOLD = 1.0;   
                const SIGNAL_DECAY = 0.1; 
                const SILENCE_THRESHOLD = 0.05; 
                const DISPLAY_BINS = 4098;  // Increase/Decrease for more detail
                const HEIGHT_SCALE = 0.5;  
                const CURVE = 0.99;
                
                // Frequency mapping parameters
                const MIN_FREQ = 20;       // Hz - lowest frequency to display
                const MAX_FREQ = 20000;    // Hz - highest frequency to display
                const SAMPLE_RATE = Engine.getSampleRate(); // Hz - adjust to match your system
                Console.print(SAMPLE_RATE);
                
                // Amplitude response settings
                const AMPLITUDE_DECAY = 0.95;     // Higher values = slower decay
                const AMPLITUDE_ATTACK = 0.3;     // Higher values = faster attack
                const MAX_MAGNITUDE = 0.1;        // Lowered to make visualization more sensitive
                const MIN_DISPLAY_DB = -60;       // Minimum dB level to display (lower = more sensitive)
                
                const button = Content.getComponent("Button1");
                
                // Fixed scaling factor - adjust for desired sensitivity
                const scaleFactor = 4.0;   // Increased for better visibility
                
                // State variables
                reg signalLevel = 0.0;
                reg smoothedMagnitudes = [];      // Array to store smoothed magnitude values
                
                // Button callback for enabling/disabling the FFT
                inline function onButton1Control(component, value)
                {
                    if (value == 1)
                        fftTimer.startTimer(30);
                    else
                        fftTimer.stopTimer();
                }
                
                button.setControlCallback(onButton1Control);
                
                // Initialize the FFT system
                inline function initialize()
                {
                    pnl_Fft.setPaintRoutine(fftPaintRoutine);
                    updateFFT();
                    fftTimer.setTimerCallback(updateFFT);
                    fftTimer.startTimer(30);
                }
                
                // Main paint routine for the FFT panel
                inline function fftPaintRoutine(g)
                {
                    local bounds = this.getLocalBounds(0);
                    local w = bounds[2];
                    local h = bounds[3];
                    local path = this.data.path;
                    
                    g.setColour(Colours.withAlpha(0xFFFFFFFF, signalLevel));
                    g.fillPath(path, [0, 0, w, h]);
                }
                
                // Converts linear magnitude to decibels with a minimum threshold
                inline function linearToDb(linearValue)
                {
                    if (linearValue < 0.000001) 
                        return MIN_DISPLAY_DB;
                        
                    local dbValue = 20.0 * Math.log10(linearValue);
                    return Math.max(dbValue, MIN_DISPLAY_DB);
                }
                
                // Maps decibels to display height with a better curve
                inline function dbToDisplayHeight(db, height)
                {
                    local normalized = (db - MIN_DISPLAY_DB) / (-MIN_DISPLAY_DB);
                    normalized = Math.max(0, Math.min(1, normalized));
                    normalized = Math.pow(normalized, CURVE);
                    
                    return height/2 - (normalized * height/2 * HEIGHT_SCALE);
                }
                
                // Detects signal level from buffer data with improved decaying
                inline function detectSignalLevel()
                {
                    local magnitude = buff.getMagnitude(0, buff.length);
                    
                    // Use slower decay for a more natural fade out
                    signalLevel = Math.max(magnitude * scaleFactor, signalLevel * SIGNAL_DECAY);
                    signalLevel = Math.min(1.0, signalLevel);
                    
                    return signalLevel;
                }
                
                // Handles silence or very low signal
                inline function handleSilence(path, w, h)
                {
                    // Reset smoothed magnitudes during silence
                    smoothedMagnitudes = [];
                    
                    for (i = 0; i < lastPoints.length; i++)
                        lastPoints[i] = h/2;
                    
                    path.lineTo(w, h/2);
                    path.lineTo(w, h/2);
                    path.lineTo(0, h/2);
                    path.closeSubPath();
                    
                    return path;
                }
                
                // Creates the FFT path with optimized points and improved frequency distribution
                inline function createFilteredPath()
                {
                    local bounds = pnl_Fft.getLocalBounds(0);
                    local w = bounds[2];
                    local h = bounds[3];
                    
                    local path = Content.createPath();
                    path.startNewSubPath(0, h/2);
                    
                    local actualBins = Math.min(DISPLAY_BINS, buff.length);
                    
                    detectSignalLevel();
                    
                    if (lastPoints.length != actualBins)
                    {
                        lastPoints = [];
                        for (i = 0; i < actualBins; i++)
                            lastPoints[i] = h/2;
                    }
                    
                    // Initialize smoothedMagnitudes if needed
                    if (smoothedMagnitudes.length != actualBins)
                    {
                        smoothedMagnitudes = [];
                        for (i = 0; i < actualBins; i++)
                            smoothedMagnitudes[i] = 0.0;
                    }
                    
                    if (signalLevel < SILENCE_THRESHOLD)
                        return handleSilence(path, w, h);
                    
                    // Calculate the proper bin-to-frequency mapping
                    local totalBins = buff.length;
                    local binFrequencies = [];
                    
                    // Pre-calculate bin frequencies
                    for (i = 0; i < actualBins; i++)
                    {
                        local freq = (i / totalBins) * (SAMPLE_RATE / 2);
                        binFrequencies[i] = freq;
                    }
                    
                    // Now draw the path using the frequency mapping
                    for (i = 0; i < actualBins; i++)
                    {
                        local freq = binFrequencies[i];
                        
                        // Skip if frequency is out of our visible range
                        if (freq < MIN_FREQ || freq > MAX_FREQ)
                            continue;
                            
                        // Logarithmic mapping of frequency to x position
                        local logPos = Math.log(freq / MIN_FREQ) / Math.log(MAX_FREQ / MIN_FREQ);
                        local x = logPos * w;
                        
                        // Get current bin magnitude
                        local magnitude = Math.abs(buff[i]);
                        
                        // Apply envelope smoothing for each bin
                        // Fast attack, slow decay
                        if (magnitude > smoothedMagnitudes[i])
                            smoothedMagnitudes[i] = smoothedMagnitudes[i] * (1 - AMPLITUDE_ATTACK) + magnitude * AMPLITUDE_ATTACK;
                        else
                            smoothedMagnitudes[i] = smoothedMagnitudes[i] * AMPLITUDE_DECAY;
                        
                        // Convert to dB for better visualization
                        local dbValue = linearToDb(smoothedMagnitudes[i]);
                        
                        // Map dB to display height
                        local y = dbToDisplayHeight(dbValue, h);
                        
                        // Ensure valid range
                        y = Math.max(0, Math.min(h, y));
                        
                        if (Math.abs(y - lastPoints[i]) >= THRESHOLD)
                        {
                            path.lineTo(x, y);
                            lastPoints[i] = y;
                        }
                        else
                        {
                            path.lineTo(x, lastPoints[i]);
                        }
                    }
                    
                    path.lineTo(w, lastPoints[actualBins-1]);
                    path.lineTo(w, h/2);
                    path.lineTo(0, h/2);
                    path.closeSubPath();
                    
                    return path;
                }
                
                // Main update function called by the timer
                inline function updateFFT()
                {
                    pnl_Fft.data.buffer.copyReadBuffer(buff);
                    pnl_Fft.data.path = createFilteredPath();
                    pnl_Fft.repaint();
                }
                
                // Initialize everything
                initialize();
            }
            
            ustkU 1 Reply Last reply Reply Quote 1
            • HISEnbergH HISEnberg has marked this topic as solved
            • ustkU
              ustk @HISEnberg
              last edited by

              @HISEnberg Have you checked the perf with the new profiler? This would help finding the bottleneck

              Can't help pressing F5 in the forum...

              HISEnbergH 1 Reply Last reply Reply Quote 0
              • HISEnbergH
                HISEnberg @ustk
                last edited by

                @ustk Precisely what I am using, it's been super helpful and I really appreciate Christoph's work on this! Unfortunatley it's a really strange issue. Generally (90% of cases) the plugin runs completley fine, and there really is nothing super complex about it. However for about 10% of users there is some serious lag and even crashes their DAW and I can't put my finger on whats causing this (I haven't been able to recreate the issue). So I am trying to minimize the imapct of any UI/Script callbacks and paint routines

                ustkU 1 Reply Last reply Reply Quote 0
                • ustkU
                  ustk @HISEnberg
                  last edited by

                  @HISEnberg Maybe you could just try with the stock createPath to see if it's stable and if the issue is about UI drawing / message thread

                  Is your interface script deferred?

                  Long ago I had a lot of crashes doing that kind of things. It's now stable and I reckon I added extra security here and there.

                  Also when working with a buffer, I tend to create a copy to work with instead of the original. Afraid that another thread want access at the same time (I don't always know if the writeLock is set, so...)

                  Can't help pressing F5 in the forum...

                  HISEnbergH 1 Reply Last reply Reply Quote 0
                  • HISEnbergH
                    HISEnberg @ustk
                    last edited by

                    @ustk Ah great tips thank you!

                    My OG script is using the createPath method. It performs well (generally better than the HISE stock display with the floatingTile).

                    The interface script deferred, does that just mean the Synth.deferCallbacks(true), or are you referring to the specific script?

                    Interesting suggestion about copying the buffers. I would have thought there was more overhead this way but I could see how this is more safe for threading.

                    ustkU 1 Reply Last reply Reply Quote 0
                    • ustkU
                      ustk @HISEnberg
                      last edited by ustk

                      @HISEnberg said in FFT Analyser Path - Need help drawing the magnitude to height:

                      does that just mean the Synth.deferCallbacks(true), or are you referring to the specific script?

                      Interface script should always be deferred. Included scripts are just part of interface so they inherit from it.
                      Scripts that are dealing with midi/audio shouldn't be deferred

                      Can't help pressing F5 in the forum...

                      1 Reply Last reply Reply Quote 0
                      • First post
                        Last post

                      27

                      Online

                      1.7k

                      Users

                      11.7k

                      Topics

                      102.0k

                      Posts