jdsp.jpanner node issue
-
The jdsp.jpanner node works with a sine generator but doesn't not work with samplers with multi mic samples as a polyphonic scriptnode fx.
-
well, it's a stereo panner, so I'm not surprised it fails with more channels. Just use a
container.multi
node and duplicate the panners. -
@christoph-hart
duh.. sorry. Yes that works perfectly. -
For some reason when using the jdsp.panner node, I am unable to hard pan to the left when playing short notes in a sequence. It works as expected with long notes. It seems like it has something to do with the peak node because going directly from the global mod input to the panner works as expected.
Here is a snippet demonstrating the issue:
HiseSnippet 3956.3oc6cs7baabFGjRfxj100twMMSmzoXzzGzMNxDfjxRMI0xVObzDKaUSEmzISp6JfUhHBDKK.ndjFeoSmo8Puz68efdoG5wdIYl9OPuz+.RtzSclzqsGZ+1cwiEj.7AHEscFpCRD6teO2e6te6G1kZWGhN10k3Hkq3dm0FKk6RxMNy1q45MQl1RaugTtWUtsMYO7odcbvtOogoM9Dzw2Ca+jiUQR28r1HWWrgTtbycOJE4JNuD6mu712EYgr0wQEII8XhoN99lsL8hJc20dGSKqsPF38LaIz5ZqssNwdchEoCncyIWQpMR+Hzg3GfnMKurTtBaZX5QbZ3g7vtR4l+tDiyZzjbhMu8O1z0beKL8AUoF.i3EuEwxfpwzRkVuookwtAdAWIfo6F4Sli6Stl7NlFlgkG4atBqBkHJD8G4xGW8lKl5oJpdUDTuDTo4ETo44pzUkan6X11KpFp9bQ4ss8vNGf.2tnpvaqTtOSdcBz.aukZgNBukC7PHAkWtRkan.+55uwAcr08LI1JD6GP7vOzt70K8qJUrzSKozcUGbPh0QEiCwxB6jX0zdZm9QXY6Ns1G6bCkiQVcvgMDL+39T4z8ohc45bqVngD6ssM8dXarcZ.AIeWE7o2c6MPdHniHmeYP6Zic7LopPtMvGCnZd2RQ4MvtG4QZC35grO6k7KMBEolXe2eTVYV+xTre4BxsQ16PLD6Lx62Yj+6uX3HIWr2aiMOroW4pzwNkDJ+8LM7ZVVsBq7Rk.q00C7bNJbNeezYXGUk2RgMi6RGh817fCv5dkWTr9EozxIkW76XS12En5C9PnBgh9fJeHTZf3QFrRKuH1936zhzw1awannVuxOBFjyTGQJUSjx6u0CUiQpJmTQJ0RiRsXTp0KkUSixpwnrZuTVKQJWec0tsS0JcSZ8zHsGCsWZWNQZeL1hna5cV2lauzeqDo+QHaCRqtMYUeHyADGkxl.cUdCESk2TYE3Ou1qQG2o.+HxcyOjh3JuXKhAF3yh6hroHmTaloMzpWWcIlfJlXSPmRUn9zBWOb6FleLUdUVphJzrmFGWsRhl7c77fUxW7F7dIsdbTqDSG84bhMfqgUpjNK78FzI1VLUwXXXg2k3ZRmqCZMLNdodFhrZhlxFXczYbKQMAKY0AYIqNPKY0trj6CAfgbn1xMuYxhZXrF0jmqnQGWODUW4f3dMHfttrnzagH7IdSRd5lGgsvHWLW3USR3pCxcF0hT8mQMY.NTAoMTdzjmI7sgfMCQ506QYzFn6TKQKJdaRdpTnI9qfvjesazCuqNPoWcvcl05qv0BDduyGBTNHwWavhudeEe0.wm.Zp9.Ee8AK9kSS7PDX.sbwWuWW+xCT3KmnvCWPPsJeEA0ke9eIAlRqqXZKJ2qWpnNkF+HKWGYYsOrrPYhsPi7qjsVXISaKXrpXTo81xx5jVsI1PugXLpvRzHKP9F3SAWm.UKwJ6gGDQFUTEcOwzSuI3no0BJJvhh27lPjTve0g4nTp7igOUz7fxLYn7SfEnuNsDZCKVTL7MpIBK34XteGOb430vjhZX2+HPZah6lAw0EXnLF7T5uvVfJlc0QcjUGa7gBpyNHHZVz9tbmy04rhqbvu22AiN5MXNTqCHpAdT0t7nbmxHaDD1vtHe5n6.zxX+QTzxozgDZau4Dx1xhoko9VQSqb28t8ZlJ914a8ViugVe75H.pKNFFKk7.naHxM.5pE.c0ljPWsr28VM6HWsoAxc7Lsrhb0l9HWsrib0FOjq1PgbqFfbqNIQtUyd2asribqNMPtimokUja0oOxsZ1QtUGOja09hbYEbyat95gwKTqGnqfMGrStjjs5xYuyrdFwog4lZHfoSGyPcjAjB1vPfGEfiijAUerbtUxxHsDoOQrWH3q9KXfuuRf9d9E9M13ugB.drellC.gKOIW7tV16OuUFwkwyb946B3im4koEv617ldKhWKiH4t03LrPdRrHsEycXu4i.z7sljn45Yu6dkLhlEeONmuX4wy3xDVNtwM8Px0yHRNt9lAbbuLHYTb.VFwdkVEC.yqv.yCo3tSHbgKj3iRLnugoPFu5nv3M5Kic4uqmPVqVYT3ci9xaG9qxIh2piBueTe4cShkQDi0FEF+18kwPSUrXMLj6UGEtuKx1m+2TiMHKlPhKhvbGox2GSrHSzhKjpURVsiywv8zqVuWNVMUN1SSqMhBmOPUglh+VDiNVHZp4C0kk80k0I1tDK7RscLs8De+HInAIDXVhZPIZ9jeJ8kjO6XwHdrXxcUesBZpG6.tbY+C3RCKSCrijoA8jhEdtPjXJs3wzSZHXvkjiRT5XvAswlCUGGNbQ4vc+kUUHJ78rwgqHGOnorwkKKKtjU13wEj4mLirQ8BxrCCQ1Htnr+QOHqj6e3AxF4Ejoul9rhfBeO6iKCzFWFTcLX.e93DXPVNjczof7eep.rZnlD5TQgdl3CwO+EwqQ7.G+otcN3.ySoSPdeI567FluUFVTl5CFBkI1DZQZyms+ZOyzFsd0FmmcZS0dzFkO4Yh1HNocZvle1ZSMWivB.oAalZZSOKljFzYpoQcsvTZfmIr9TbvKxkFxwLMMAbfAmtE+xV6y+3eysizN9inHF+69aqwUvBxr61fnFtv.WHMMvjYFTCQIKODqBmFrIYYOb1UzhzoABFWKqvfVgOk970HIK3zkzEFp3AD7h+5gclxzP2cMHXTUFsTUl9Mx6bRYplpxXNYUF4gJlmHko8uMd2Thf8rewNpN6hcLUuXGWQdGdJIhemsnWTscByUQr9D5sgxFfdmIdQ1lXWjqgUEup7tzr0lrNlOAcD7TmG5n+0e6qIyuWJQJ37xa89mO20MQweAt3+1x2yhrOxJxQAXBPSv7gYeG+pUBqWIrAp84BJ92G1KnX6g9BJlat9cgDUy3ERb9m6tPhCKN9k5oqwcJNZK2BBpYAtZ9p9yIS6IeLxwDY6EpaLUt.aWfCVKuqYahExQbd7uPXd71N31HG7djcsPmU1E0psE9Qf8bCE9mc2E6bWHP8i5cJ41bklUa48g07vNotXvDechAsZf7P22n1eDTzb8O.6cBw4HZGVN+OCnJZegLsuP5NVVjSnqoa5OWH3xYksKw5r1MI1l5zh3s.CfOaark+tMxImKOaxwGvCCeKjNn8msKxqIcVV8f4IVRODyxEZT+OCkAV3tHGTKrG1wkacTNFL1WNGOSKsZwh5fd0jmiVuajnko79RxP.Lq7j8ocsRwzkWVPWDZSb0HKh7pxm3fZSb0govnfb03x8kDjqM4IPvWlYTn4hYmQBTpGetCdIgpGMoQ6ksvmFDcvFltsgAX2kMJwsmRfm2ldB9oKX85vbqB8gz64cvSfn1wz9w7LeIKWYoJR6fNM74ZvyMBCDTVVEdlOUwNTS9Nc7HsfgCASfKv1BQrs.ksZB7sfrZkXL9ZPKXWuG3G0ZqVQUcYXLzQ3S3NPdCzzVc0J0purlV0ZqbqUp6equ2xA+K6fs0OqeZSLiTMlQBJyxoXkWhwbkGQG6IEibog0AplpC7dfllNSmePLkxjEj2sIcOkwZ3HykBrfB6VUhB5LN1IVM4x4+Dr9PdtGaa2GSqUGYEvQXZHgwGKH2FiNpqghWjOzfVynMnX9I2fh3lbT7m6gbND6MocCEkcMOTC1JWbGwkkaQOeAA0MR9h7wFhmazAS7h5BLkFNPPb9KYsfbilHHPiAMexi6NM6rc5XiYqC6F+QfFpUusQWSrFJ6sMBmLZTmGSpaCn.a3tzfbVg5uay+v+5St8+318U+KLX8WbNry+YMyDx8tDxQsPrHUF6MnNRgipMKbzYgiNKbzYgiNKbzYgiNKbzYgid9EN5m+wW6OeuO++b6WLCGkVYMoYghd9EJZ0YghNKTzYghNKTzYghNKTzYghNKTzyuPQ+4+0suT9Wag0dQMyn+dq+4+8O8u+hYYFczBGsT34I.VwMJlL+HPVe8Q6cy+tt38Pr3thR0911GC5Ck9nxhDzCXw2IxtFsHDulwO6GlqsA9.TGKudSje9IUffCoSo.6.HOk8J+f0dNvq3e9fJEdlmY9iuY3iQG6jyG2yFXcy8wVroWNus0E315E7OM09GuF9CSR6jyQVwrww70NNGLnLe92l6q1m+sGQ53YZe3NHOG5gcUFF40.VSWOX+atAacy+4JAq12.aavd3+A+3WoJ84b9UpFTonIdYtIdQY5Wr+ruGpYF3KydV48PGiUtGF1CTunKgSS2u3m9t+kI+oo6g5df32yAY6BaSKFiafaYtGwl5oiJDfyzUJ4wiGaVLjShU8k2dKvHSjlFHuNNLnWv9kEfZyNkeOubfZYAnz0+.KtB.coQ8uoM8KLEnDpN9Mj8WYJnz3X4cH1jfDlHLWHFFCd3gwiFHQCx+JkDVx0VK3pNDVz2aM9WzvwWsXj7EpCuune8Wuh+MfQgN.T4E2CB8WsWHHotyKKSyrGOqpfboJv2RNJYeJ922fsdesDunAeW4jRn4ypbXdY5MvvFVpaaWWHXwgKYl4GljYJODIyrKo2+MOGqCdtrt29tS.YIYXS7bMJlBeMAENrEoqf4qkKvVTXtZEjqB9z1.NEanbhoWSEKBTmMA5TWpToSZhsUnI8fRfaShiGupanXYdDVAo3xl9TwkuoSLkhyTLcs+gdJldJMQNFzuAksw.2svG34yQPSUfOfsflpf7TTUtcoRk0ahgIZ7ZhUZZ5hUfXaZ2wSgs21qWpDvtVcb8T1GjFAJrIUk7HJFDtdSoqDMsO7uZIvPC0QcneAy34apLQSa1g7CZNUK.4qy2hMngFlNvGrNixVZ6XZtSoRSv9z4hkeWth7jdxcie9cEptOXtutrf6ztKkc9AkJpb45tPXiCAIZPVFYXDOCCA41YSaZX+r6XRThFhlYMJWCB6MN9EjhG6jPNFhZ4lm11AlefMxFFRIMpolKuep43gvtIrcTCHbJ9dTBBqMsLbUX3LmJq0q4.lXhlCOkVbcpK1bg0DSkG2eGCJThmFOZ4iv7N4SOYah15BS9ttDx+WDIBoUOdNLKvRka5YxcDL8wCwWT9i3i5ii54Wdv9h4+xO8EJLe7GhkU8VPnulRottHu5rtHnTRuoqHudWov9iLbauTPcSF7e99i+G2tQ9vXJZY.n+QeJmWYDmxof7if0Ak5wX5CNXrSN6zHiDSCYzBo6PdhNOrWJr4BrRfEvsY+GErn7NzmUB+dbgmfe5a98I55AuTnjoQKCzTMCzTKCzTOCzrbFn4VYflU5KMzrb3OBiNGJTvtaxm8KWz71yI8+ArxEcdG
I've spent an embarrassing amount of time to try and get a modulation system working for panning and this issue is stumping me.
-
Here is a gif of the issue if that helps:
Any guidance would be appreciated.
Using this same system works well on filters... The mul node is there so I can control the amount of modulation.
-
Your doing a lot of unnecesary conversions between control and audio signals. You just need three nodes
global_mod -> pma (Or bipolar) -> panner
-
the multiplier is an amount knob. I suppose I can just use the bi polar node's scale as an amount knob...
I intend to sum many modulators before sending them to the panner which is why I am using the peak module.
Here is a snippet that shows the whole system:
HiseSnippet 5396.3oc68jzbaikdfR5QIRuz1ic2yTYoBhRpNpy3VF6jL8zoksVbqZrrUY5wyT0Tc4.Q9jDJCBv.BIa0c02leBoxobK2y0bLSkSysjpxufI+.RMmykj2B1df.D.jfKRMYWUaA7V9Veeeeuu2BN1wtCbv.aGtJ0d8U8gbUtMn8UVtmu645FVbGtGWk+XPeK6WC+f6ENvAussgE785W9Ln0auTh6oW0Wev.XWtJUV8Y3FTo1Zbbb676+1+gu5o5l5Vcfduh76M1FcfO2nmga3aOdmetgo4A5cgu1nWjZqrygcrs101z9BDxsJPfqudm2oeF7E53psBfqR086Z3Z6z1U2ENfqxZO0t6UsO298Vz5+FiAFmXBwOHx0F0QzWefsYWLFieK2tmaX18Xelv.NTmdbHKYUJK4gfiL5ZD79PVy8HEvG1hn7iJqvhdqxfdhogdIfRqDAkVihR2GztiiQe2vRv3ys.GZ4BcNUGw1ihJz5xU42B10FUAK2s6o+N3ANnGBZvVZBBOhG8+9ru3zKr53ZXawaa8BaW3Ks15yp+c0qU+6qyGunSOMwxvfww1zD5jXwXIsynZ3VVWz6Dnyi3uT27BXPEQjOKOEjOdZGJUGoh1VGZY39x9PqzTD37XUn+5Wb3d5t5HAQEu2gpWeniqAFEprG7RjVMUrTCrGbv6bs6izqyoLaCPecqir6lj.akU3CjXCfteMz3ryc2RFKitS8HE7KM55d9VhBzBv+GhhG3h3dN7zd+45WAcD4+Rdxf6sOC5t+omB63t0lQKeSZyoMlVvO2x9jAn18q+FRQQd4uV3aPu2GKz6Rd6VaBst7I8ruvxcyGwKpJ7WiTp7vpnsULw197CdoHSiE8ZbzlJkVSkXZpTBMUNslJyzT4DZpRhMc2cEiSrhBC0V0zZ6PDaBMVKwF+FnocGC2qhSxIzAMRrCdktUW6dwIawPMnSsc32x.0Tguf2f+mw2D8O+ze5mcm5e2cpyi9EEDFeCVKbqM6Y2Eh5rMOV2hnJkZ8LrPU6yE2lBtZIVG8OfwqQUkAtv9sM9VLHE1VPDWuuOthVyDo9m35hblr4inxLogYZMYvT+dOwZPwSAgQzIdrErYuMSGRc6ZBO1dfA1T3lDSwH3N7PmVIRQ6A6neEkfDShfZkIA0JaBpULB54nfAzcHjziebxPKFQImLMIlrsj1WLvUGivTs6DHKTCiQWinJLZTwpTxFjdEzDpO.RQ.4DQ.wLYrgUIcNaXcxh0FAf4j2lrAyuFEFTv..0gQHorYrRISWwpUxFcQUwymCAGTdzvcub1XfbdDsJiDAj7QfDLchZZlnfRdPA0QhBx9nPR5WpYiBp4AEzRCEPwvgZMEETSPLnkMBnkBBD3CQTl5DQT65iWDBx2g2vJJvQXdsN314En5t5llmfbkrksUjZ4UHkI73G+xCNn89ulWiG4xm26gF3GBdpI+9u3M3JaXYhF3GMh3g61s5X2qusERN5GeLgcVCEQftIBe6B+.hkGocaSd2KOMrgTLq1f2a314bjHBWNlzvcSsG+XTLb3+nCxzGuveC9OqYb5VDXw+2RUAHujT8Z0hFBIl2f7t5XbxEtvsXJou8f88CNzGy+hB0CVvyhzC9phn1+8j+OzDguAH5OarQTVvLNHJKolAh9keYIwRovo1DyRQsNDYOwAp+tufpWXdpsXfhgXYpXDF4+XqYDsKllpFSJpFiZSCU4KEsiggTsImuln9QfFhTfFhTIqgHM4ZHRyHMDoIWCQZlogHM4ZHREQCQNPCQtj0PjmbMD4YjFh7jqgHOyzPjmbMD4b4igpifBMJPEQoLUQBxWyXqgDoGllJHSHhxRpSW0ig.TsIlmlp4i.0iP8C0RV+nDTPlUZHkfJxrSGoDTRJlVxkdoHMPSQqL0TXS.6XqsDuallZLkAJm.kOc0bRFZ0JG9bfFD8ei6Fxgji7.8mFko9Sz7uO1ZOrcxzT2YxQ2gn4oqdSRvpVYveGQfKgZN5j0WnVfpSSppSNg7SB3v0RVwrKNY+g8dqB066kUuOfl08v9WTnP.ncV.vglU8H.PrP.3UYAfysM6Fo2kJTu+0Y06nZyaRpaHHjKDHNV2xCHOVJpRE6LkBfS3LpE8hF1eIAnYvlERxBoQ.w51vogIplP2JmZ2NbcUJNJXSR6LONKq8r6dgoNNemgXjlOFsqs0.aS318cLrbilv5jviXLcQszwCzSjz798dK240l87P0xZOOL5MBS39enx88vPTUcI6jg65sSFZaZzE5vYzEu0SBV3eNBADce+vkiN31fvDMMA8fzD2CxSRObKPvjYFWTHLP2wqGtGfMXmwqWtKHpyuwqO1.PWmclVuyu+a+MeUdZ85.xZZGCz+je6N4ow0.dqcLSy4kk+u9p70buU9ks4f+t+4bA8p.7pqFmo8WtS9zfBVZzwUELXoMmzNPdB5.pU5D5fwY2TgMA4szUH0pbYD5CbU.Uvv6J++fcAyihS8Lh73e3eavEmdpwGvFFeNGdwHQc..4xFS64.IXLjQvh+w4EVHEEKdTk4DVHGEK92mCXQTixrpEcmkrhHF1YUKlgXwPNGXUMlgXRLGLrJGkNdTKamTrZF+tzwf9+q63umAh5SyCq9tG9u7Lxi5nNrV068W4gyDDqJfrImihYqmoCPVkELhUbvGEhfb30jUsHMXlO5HzYJqPdxojpY4AlUl9+lF.SGBajK+zDv7qVIWV1RSaMlRcQQBoXHQ24ARHGCI9ckMR.xULGDj3+Ip3HQk2g2g12CbDcpnraxe7Ia3nf4nxrQswaedKDocUDL9qhuy+WK8YrIj6ClPdQ26CNFuodRFeWIA7Ee.Clx3q24n3N.5lNODYWCbvuZjGZhRGU1fhJ+QfmYZehtYHCDEKJBqfzMk+epWw7AkyGTAwzN0Kne+m48TuzO2m5kJqlaNRANkKqMsNkKyTc8GLjXZPwGctZ9v3DXhqGAMqRQy+DOKSXo5azcLzsbCvMBJWkL6frwxmZz21T2I5o24+FDl0n9Nv95NvWaero9UaMPuWeS3qPzyi3o+8figNOEEn26FNgS8oHMozsNAYCF5jZptJ8rfkUtt.kzYlJxo24EP22a67Nr.qh2eizpvxB.VVv8DSS62i8wX3YuDwxIu6Xayq5etskQG7qn0.hT9rrfldQshburBGoiog2cfdGD1e0w5tmisD2w2lw1cBzYo.MT9SzxPT3w5N58ftPmATpC2i91AnNwPXPOhWP7YeaUb4jCGFEz.beea.xgZy2dBVzxwfKeRDbIRcXQiwAj2G7dG891C5fLmgUxEYg6Ch.WK62hBFvXLAZEF5LDfbCwycfaGo3hAMrT1D9A+LTrmwf9nAXOkLJYvPuA87g3sNK1Q1miLjEQFhOHg9Og.0QFVuglID.PXaAtiz+PvyJnmaGDfB.HhdlZp3HLI+jKbs6gFN3asLR2VMraqh6VoH8aUfn.SG+PTMH6QezOQkVBhhZnwPuC9dJCjVAIoVsDTT0jjjUZ1nop2wJ7.G3e+EPqNWMJrggHEYHRDxnkBUdaRmy+J7XONllykWFnXpLvmgvzz6z0xpSwcx5fiOGO2ElJV3doJIHx3nRXhuX0cXJoREumP9GVgxwNbvavk1Q2zuGQlghL9XcPen96hMT7VzgF3RJ1fh0JuAErjbXLpuV24LnaYyFpAFXblDZpErLh6BPJvmuseYEhWrByP7JEWYh9pXJSooGDAbdtrVGz9bcTfFYYOw6g0ARa2rkFMWqVPhW3AbLOhZAllOraLypAP9vtAlhJpULt3neUxfctrXUdOfMHo1RRHxOwQSJUylThZLa5a9brTgmzyabghEUZYrnKiEcYrnKiEcYrnKiEcYrnKiEcYrnKiEcNEKp7xXQWFK5xXQWFK5xXQWFK5xXQWFK5xXQWFKZ4EKZ8fsR.xcaX.Ydger6tEaY4+ECfuVmDzU3V83PqKQ3Ct8guKDPufDbWztqcOaa2yY2BHF6rG7T8KLceS7sNcocihlWlRUxdVcFyU9zcV.3JdaSn5AaWVB+3iCdLbGmLcXO6A6XbBzjXcYZSqqSo0M71Ptd6rF5CkIcR6QxqIiioNNlBDzXu83V8GlaOtWYegqg0YGo65f2Ol.zHx1HG8c7mT2.+4y48rfeH.sgVcIO7+g94UnH94JdEJ5WXTx8tTx8V.7cIM49nkPreB4Y9eo9kP9mAQSLZXstna1teyG8eT9a1tW1wEA9W6naM.M2MlNtMrmwqssvb8vWhTywdMoAoyXcS2Iwh9Ce0AHhLw1zV28BGhJo+jninBNoaBPgataBvIe+4N96.vJGOz8m98Ppw3oEruE9Bn.8FLN9i.ddu7eKqd8Q1V19YTIh8RHZ73YmwFwPhDj2IXH3Mati+NtO3U+S6PuQQY8nTHdgX94EiRd8S7NvE73Ai72L1W0W6bbTph46BvoDjlNVDbwHvcAQOU1IdYz+mARJAnyqbd9wdH7aonmEZXxaj3FJemXXkThQGYVPWI+YAMYzn7xJZ8HoAnN.MMeJnYvrGFAyBpw3kbx0h.tM.5m2cP7DgdO7Q1jXRbaRwECPfQNMxOBGISDNk+boIREt1jK+zfLrTYknufan4SuRz4Sul+7oqANwKnWlIS6mOirlPOWhcZc+NUdL60QRIbEMsUqDMsU6ilrVWj4ofH3YSLyFImE133YM.IkAEOQBhsZn0PTqonlhjprjr2mPAOGf4MIriNQoeBtbAeTQogRqFJphDHcGOH8bHRmM8DnNynb+iHX9xE9zEW7NxcScYP3gTbQfpCObikIg2h9qQCMklRpMkXT918BmKYRUpZ4uj.j7ulTdnYRirusuDbrg7kusewEy2QBPsRk3uLR1YqBz61UJYKk6agy1fmDIZVM+bwjraxXJa0wMI1iPQHm8S6N5lEQgRkoejvx3X5tZxBsjP5uMEZppznUCO.8L8d8zG0pu3E4Bs1cPJ5wD12ltlAzRXkyQCictu5ALg8D3cctp2Bv5sW6TaS.GDV.0aKykK6VAwIKMSBT91fyHmpw2NzJz4sJ9QJtXKXYRpnqLBUza4OTQTnPJpoDVZtfjXY.oRb6JTIetVGwJ4uNf16YZl0SaKjmOOrOUkwupZYXfJjoPVNQwYfEqBDDjGNs.64cCpmWwq8tdiNJetpauNV2VQ95uxcJtiW30tKI+yqy5eVtv9miNRY37pUX+2UoySKzAsXwbfWfAtSfyboYlyb4e35LuJqAOohYvq.JBEdhGDiehpWOl5wMQG4RWmcjGSuVdtqWGyot5Rm5WycpWk0otxD4TeRcfKsH5.WYl4.W8luCbo7YnSYAyAtjxRG3yKG3x2fbfqtn4.WaoC7aVNvUKrC7.0H.nSGwLz4x1Gt7b2Gd0g1ZGkgK7gUxyCjUmJPdw1Gu7nrEFQlrf4hu4RW7yKW7Mu16hOx.9EK0ZkFW6TqW5POpCcsw2g95XG5h0mXW5pKNSKOXbl1TdV4A.pwM+IkqjKKaZKXV1jEV5vdd4vV8liC6FKZSIu4xojeyxCdi4ZN00V.mOdyYz7wG1adqa9dyUykYulKXl8jutt+ftNuKy87lqcywadqEMu4st9qV+Cqcgdrc4VyB67Noc1VY5PWYQbQx0lYKR9O.lOtV9VLwEsIjKos7bgMi7X23FzZhunMAbUgktruVevwDmZGbrGFAddmDVFPUmNNDeTCC5f6C5aOfGZcIuN4hpndlvNeCDSQuaj5JobRQnGNxLoj6ArfmEgRV7HDuSQUlTxegW3T7FV8uvkWjudcrPx7TawxPJAJt0gwgZ8OWMYRt+HhfCQc7hkfnaVRch4PX9iYElR0qinToEvgY9aY5znnR5NfcVJejTxV97wLxGYh3QdQU5nciR5zLaoyeNizQod8NcD4wFC8rCtvNNpQdb8hIFrsuEVWu9qjYlzxlLxIUhb55gfpYdbPQnlRRRMKGhImC2ueJinSqd8K8uWaKKw2LMfiV4wje.IFJSutPfRZYSfOhQj1ndcG5E3KpW4srcg0iHYWPGWplCiNOD3QWWCGYpjC5qJ9B.bAmh7VeCuOT.xE3qHvh5ESPUxGFhx56BQQSU4FfObpdWnyhUZjSkYEftwtHG8SRlWoEimwjpkUx2E43p.o.rzupdeQFBXJu5n1E9pdL4OcBUAmgSSSru+Cjqj5PoxFH1nfvH2nIYdWy8.f51JRRRMDZzPoohnrPqLtRGSAiWmfwhyKTtTG.SyoG4VwqopVKklMUkm9eoTVGz6BSWCtTu4VoEO4etn7TtRx.zYEN4fqjZdcqN8E6Q9p9Ld2OiaPteFK90ynrfnfr.9tSroRqFdd0tEf9wjvv5r3atzYNW41fWAG.cKheI+QvK0KVpWLBmyLx0OM9GWn6hS2+9VW5cqTmyOxPzGFoilruEjoqqSlAsLLFihtOILNkEQh4g7gxoeGKGGmSAlCgz0.CH9nEyOGNAzkYQuvc6pfmD+6wjXF2lsdUZnZjunFBtmtY3KA2wxyhKV2DXB6UP.OM3A921xyZVvZTVP6IRwJkusYISog2wxS7U1bBxxWMQxxbXXpZVTm+c17bRR904Bvdu3A.DXPO2TUnIxOVilhRSD06cOcOWH8OB6J54G7Rwh5KJ+F1GwcV5X5M5ivdiRDoKO2Qi39OcR8GIUZ9iXDgRktHLO2Tc4SDNhc5RLYpTAkodkVT5XbCxHaBwWJKOcjxxyBorxzVJKOajxpScorR4JkqArO8TzTODKzWdTAYjwcQAEkVRhManjanHULnnzRF4rSSTVB4wSM2PQtHPQoUylJZnIF1TCCF4LgBYtT6tq3zaXQ52PHk0nBxrqRhFlX2YfrurQJ8gDpSACe3u5oy.Ir1T0tWhDwTPD2XpKh0JWQ7CvhX+OjqSu.QS+nENlwg9.rTMU7dJHYaM0krMlN9yTJlO.sF3UUnQiVRszZ1HSnP19rzOlsyhownURpO2Gq9jBZOMlHSixdhLMKnTsoffDZxphZBhpZ4V2oj8m..GqawRzw2953m8d3GiKUPnklrnZKwFX0QUAA0bx682jAY7QiKyS4RLNh1zYP5TZreyIraK5BFR9lS9Ta620Sm7gkb79J0OK9DLOKfQO8NN1u0am.P9f.RdChMYoS9zKCNB+LuH2kQkB8L5Z71Nc72FBI2FownMxiQaTFi1nNFsQaLZSiwnMMGYaveVm8VPNr0DzKNde5G2wJA67jJqx8+2jD7QA
Using two gain nodes works -- but I'd love to make use of the pan law in the jpanner if possible.
-
Do you have any advice about how to sum modulation signals?
It gets complicated when it is different types of modulation like add a bi polar LFO with midi CC1 and env. Sometimes negative amounts become positive ...
HiseSnippet 2793.3oc6b07aaibEmTRiTjiS1MMY2VzOPEJVT3EH0PT1waB5Aq3OWiF6HX40c6I2wTikHLIGVRJaqzVfdHG5s1h1CcA5g8ZuTzq8zFf1K8TWf9OPRQAJPA1hzy8P67Ao3PJJYR8UbyJcHvyLbl48dy6ieyiOlZ1XUjiC1VRt3AcrPRxyCp2wzs05sfZlR6rgj7WAXYhO.cgaaajyQ00LQmCOaaj4QmUQZsNVPGGTCIY4raSmfbwbRRRUewS9UqtFTGZph75h86PrlJ5QZFZtA8Vq52QSWeKXCzAZFBO8xU2QEatNVG2lPbYAkkrfpmBah1CRerL.I47a1PyEaW2E5hbjjysFtQm5svmaxe9C0bzNVGQanHUmrP7t2Bq2fRwzdkVukldiZ9BAGIxhVKPjjkKRtCXWsFZc6OPz7lrAJELCQ4gblvjW1PjmR+HuXHIYARJGmjtEntpslkavHT545fcLcQ1m.IhcQRg+rRxOCrNl7.ltKZ.OEskMoQ2IrvJkKe2Rj+4c+1mz1T0UCaVBatG1E8XyEd249gyUbte7bkhNzImD6XzswFqqiricX5Is8fl3BlsMNFYe2RmA0ai59fD1OrLEjLYpJmqEdPr4NlZtO1BY1OEAIOQE4u9fc1.5BoGDd8QdNKjsqFkDj2.cFQqlerTDrAx4TWrEQutmyLh1BtQacnaXUHpci2.DYPnyM5gioilam.yhWtZT8pb8WFTNwp8IkbuEnllqZq3o2LwPuDo1jld8rRuAXySNAo5FPr4.a8gCzjbrSJWiSJeYv153ig5ABPhdCgpPbyzul2vk5NdotOfR+7oR98oI0mpUh8oJmMwRjT3CM2jxG5TUW+18bL4jdqyrIihiQHVPfLyyIyupmWe5o5gPaMnoaWZiQx4AOZqGqb4T4ZZVXcnsXrg+FHvOrkMxBZiN.WSG1YAGngkNZeB+b2R7+1oFxdMcr5o85B2hSzrQW331DKR69F7XrGW4xhd.FSQjEhMrGx8br8orvzd+MQqhdV.nmEROTWGe95XCKMO+kDQNquZX8NVsvlZpzt3OAhn7YZhzenAtMY0kAxYXNP2C2fPU42BpRn9N0ftsndhU88YrnZWcV9lFb9yzxHbXMnMA1DITuCm6nqnue.frDikLLnrDCYUV53NAaMft1yCNQ6h6ezwziVoPzxaKPKBOSXxXX1xaAN2FZgcTItynJ4Jg22aKrul3iLHNRFxMUNDeFrgR8HysQKJLb51M5orN5BezDan4XQLvViYk3zSOj16X1.cAMP12h3HS3LjBS0uEYq1Uy7PppN87u7hkk1EdQ21KSZW2EYUW6Ir1Jj1bWE6RY4G11EaPLG78VJrr4CV17zkshv5lGnTNzBeGxSnTl+SY4GTVQYEhMzony4BP9CToxCdP4ku2JUprzx2+8t+87.stkM5GzFYp1YPTSHlTIDSRHlU5CWNOawKsO01SJzzkRp.TouBvsITZ+WzbW1hRWjBfZsfNBqR4gYUxy.QFkTB.oFV2IzHrKWPaQhOjgKw1w4P5npPc+Uj3FRv9n.vBAOMho304lFzQRmQQtwmQQXVN.i5AP6lH2wsXnHvQqYECbivBhaBHJvsVzerTIKxDxDWN8JS7thnL0O8.gsyKjUAP8VPBPiKyehWih4Z8K9rezp26esJ6lQlHVbXGuKJ40jLGJWuSiHNV6t2zQ7bFkV+XRQYf7LycoKSX40f5R5dOnRYgeJRCjUxe4rhn6rIuCzgRIdML9TCHCzxHe21TgLsxLjoudgLUdFxzYHSmgLcFxzYHSmgL8JDxzBfJKd+GrhzLbo++DtzoJVzklgEcFVzYXQmgEcFVzYXQmgEcFVzYXQmgEc7gEcttEV.Iba.fLO3Gqud5dI8efC5.HCzUPgeri4YD5gN+f9B1n8Xf6DWt5FXraqvEDhV0MPm.aq61Mi98qpcFdTfITnjmJTl1RkuY0q.REuhFZNvgHBfPJ6RkGuU2lA0exjQ7rARU6XjNy6xjlWKv40qA1GZ1.a3UmM7FiS9juhrtY1w7.GS.FZnKVtre9rX41G21Uyr4tPWasKnw8ZaTmDnW0+RcN92myqcYeH.0QlMXM9ujedCpPaK6Mnh+fhr6M4r60Az5VlUXyLl8sYsK8cgmgJsMhbwnd05DK8tm9F+kweo28XUWx1efMzzgb2sPKbcjg1AXSpTOnShZNMpIGjdHuaP6XG5kqtEgIicN0gtssYpj9WhVPEbTKIvxu9VRfid05N70CnXUfWzmFqqQuVvlDu55D3ILZ7K.7hd42aX85cwlX+LpH3uDQrGa1LLhgXYnG55BUOMnmuQ08Q5HnnB7uo5iHJdP6vQTRkrH8UDermWeI.mbKQMFK85QUV+5TfiT3.Ili7aBnoGjmZVBMvkbM4FnOB1AYqb3Rw9cP70AwkOzWUo.81LZ9HNwYRrYHTcxRHZlwUYiFGIL3agGRrFI0oxYjyl56bwz.8SzHPHCByALvM3jZHN4NBbR2mX.DM.fLOKrhZ1gM4FQy.aA.rUCmH4A8MoaHyC7h7QStDUFLPJ6MnvlDj39WbmctGaJcpeN0gR21xYD6PJ5E5kF7noMWTY7xEEGd1ljqf0fXo2EWd3zsbs3ysZfmtf7C302O8OVMHEAr993O5i9CqJlW.9Wk1d69mWkJ9tlWTAoHq86TUJ0aN8h0g27mu6w05cy4AT2f5.ku4OBQzMj5Ywjl7reAB.AUXmH68yrqNE167f2m3lOJau7zPvWDTusiqPFf8G94SCgdQfOLoIBuW8EO4oIPoa811mgFG7euT.uu9RAgeO.Aqb3bEer2s5iIjEIB8h9CmBGoYurrcKKGsShCB+TXlG.azXovIuzO+waZRyt.66dqWQ1K+jjIxjjhWjs4EV1DPDrH+83hL6343pe6cLIIW37RXuKL94au7qSh3FydK7duHQ5FrP34q1KgHUMQDxG+KK+28HjsgFFvA4j1IrF706hUQYz.qT.neBVYtIDbk4AMYeYaG0y6kw6c2JLbJr0xMR1Zy4a8qLD1aipNeT6swIDG+rR0u2ZUBMgKWMcdbK.3zz.c4JHzuR4yU4prO2BSYet80u2LGv82AbkQ81hppJSH2u2Pv8qxUO+uUFS9eEOsYuaWkO2678ZUi04akqVNeqLAB.mJEfQ0yaB8yLyy6Dwy6Rilm2ApPmV2t4EnP.U2NLsMGuLjn8O.J5FrrixytZDH4Y5ecCIOMTWhn29S9G+me6+9e9qWMr5hfLv6BsCgPHlzmdEi4i2VIJyqLLLed10wdMf6qLbG88fEZ3Y9QJPQp47773rd0Ynx.KBwj6Sx+UUImIoBhodZZBcvyp2z9VHpSMDl4Y9QiVUirBsXfXK9dOKl.ZRIJ+qOq4u+spNkwW12Pjd7ebGDMSYPwAn1cI3kFUgYuURcwb+7+zG99GT3K9rzfRIF0+p+rjkT8u+s23utJGyAu78zLaN3LUlexHGlGrOxA4dooJkW.LBjCm3IAT8dksoOFw.cSFfG3N+tsewSd5mLvB1sfu8YP92if+mCJcJlwEOQz7rvtSXYT2JnHQxn9mkxWUBoqSiNekROp+YR3UmhT.Bdowen3gTWhegjXuq8jWDMx+m.xznRNmF6gAT0FejWFWXUf.qGRfTS1+SyVDrKscIEoyD+dIneFcGop5+E1D+bpLDyYogXNKODy4dCwbVYHly6MDy49CbNzpC0CpAUclzQsM4nwjCvQlU5+g1IigW