How we can display the gain reduction value from the ScriptNode ( updown_comp )
-
@aaronventure no I want to compare the signal level pre-faust node with the signal level post-faust node (Im just using faust as an example here)
-
@Lindon Using @aaronventure script I could be able to make the difference in dB between input and output of a node
Note that the cumbersome modchain I've made can be easily reduced in a node expression or SNEX since it is just arithmetic
HiseSnippet 2223.3oc2ZszaiibDlz1zdrFuI6hYysEAM7kHGXnUO73GHHwd7qMB6ZaAKuFaNMoEYKIFS0MAYSaqDr.4R.xsjSAv4T9GjbJH4P.1+.4TNFjq479OXRUcSJQpGVxZ1YFuwiwLhc2U0U8UU8UEsmZABaVXnHvvL2Ec8YFlqXUuKW19f1TWtQ0CML+NVmPCkr.hdo865SCCYNFlly+I3BlKufg5qud28odTtMq+RFFWJbsYelaGWY+Uqs2m554cL0gcgamTmdi8pZK3GH7DQf8LuUQCep8UzVrSo3wlyx3mRCaaX9CsJ97MYrspzzwgVohylat4NauyF6Th1r3FzFk1bmMJuwVk2dqlFlKdjiqTDTWRkrPCyE1W3zsdawMb8EboanaCOF9PIi5vMqW9XgmC5h3pFGz10yoVBPEZ.ZoVeXadMr8gVm3531a89v26q1fzWhz.n4b2m4UJs4Ub5MOyTl2BZy6CrpaG35K6uCZaO0pJGhrMoPLKsYoOqwb+4ErNP.mfKKzgdE63.3gdRjeyhEWm.+0Z+nb4xAAtPIwqgG4GSRjg537YzFLu7qdM0KhcnanuGs6pqS.4PofSWHjIyuJC.AJ3mvVModgLTie7GeQa2PB7MjMP3L4MhfqJPtnMiDxfaygPCZE0AtGxMP1DoAiHg8n1xHpGgCYLDQS0RwxRx2z0isVARUNrLnWaZHachq7GDRXcZvb.HccRnPuI7MJqCqIMxSF6dNg9bv+Nh2xkyJzhIOLz+Ts1Om0jEvfj+7qpQOxweQYveVMT8zKada4U0tEQ4WbFyAtBw.1c0C6Y0BGVAxoha5YOMi37tqCBXSiBYjpjNPEDgp7CRSAVfF3pzIFrPk.qGwsaS4sPzkPAPyiIIQgDTAHFAJFbLF0o.AMs5BRKArjTjA4PAaC4bpE6HPgEWCLBoOiBwA4BgrW.TCAWIF0POAPMD7PLK+pPdwVJvPue.qY.KrMxEDzGcsCXPMgZwyZ7KX1x7fDoOJl5n9vATOuF.QQd.frktBd90x8qxsL3NG6F.5GtS.kBRBPnQRI9z.vfgTY0A+TFyGbaRGWN5jTIoqHhbvKNknPOVZAvXTitj.2VskDaOW6qb4s.OFkOEfnzKb0Who9jangXjRzwGB.LDj5cdGJfdMhjj1rt4V9ZZ.QUs.HgJE.TQsjqN+pJss5ZERTLBJKqtJLnHCf5xdIHnx8v5OB6Ve..QKHTF.VatkiK8z5PIVd0stFnuubHfVRCzPc9RX4dBNSD7SER1Yw.dtuLGYvsZ1bj6gLDABOOPiiZa8ccOBlmGAUrAqqgpdGDn6xxmZMd9zzz81ZBqTGTvqxckm4y3iik0HlkC9zmW8PpjhDuwqAmymEHcQSv7P10PKPMM7xVGxBuRJ7UmsiufiZvbQoZ22KljVQZZ35f8dSybZbK3QlXmxtIeHg4L4YI6VPeOyZiB6Tr3ye91UJUZmREqrUYnq6PMEfVSBmHOpLa+Jrqd7F.nmow.R9yCckcS20+MRSro0b+.qZtR61i1dmaD1KDldSauwiD7dVG0rIT202XWv53u3d6+O+zYJSWO+bwoSvchW9JV8aLMpt8l+Vq9UZ9ALfvicgnFj2kOjh7VmC1Hz9wSXeUc2eIa3xSesIrOdh7HwIm4ENKUwKN0nRo6EULNWDIA9tSn.sGV7bZTm5v3D1rChsNrtYNrXV+bwj5n5Lti5gWAeEuYI7Yy3MKkrYJdf3QATgi3OaXtjF66OFfwkrfPLQ0bIqhEf+X7BOOwMHcfabJLDTTqUS300usf6ZiKoOQho+BnOLxcnseXv3KntdXNe8nPf1x4Ldc3vpoww7rSgdI.vdLLmgHnaMprMV6fDePxIvwa2KIMislNOQOEdlsQslLutF3.irihSClVGDA1GgiEiudT+VVP+eiLFRNqNv+hyKNhKbIqpmV6yuHycs7hFuZ8+vP22b85TpKIRdBtzSb4plcoIBNgd6.q806hV3RV5k6s44+su+u4euz+Y2C0SCNjhLRQ3aXjxWWzxmQuJqy9T.0CXETaLr2FKwD.1E5y2cALFLSFF28gyr0YPp.dUGLdAAYXXM.FJYzCQvcRbST0P48sIMwh61reDvdoAxLq.OWk6vtsWAPZP+dPhVXB1nPhVC9ZkIIZ0N+rCNpd8pm9ICD7+nO5+9pID7mOUveogC9a+UCG72du5RlORsEu1e5t6966V+J1MZqVy2ncF0a9lR9e8e8t6d1diO+3dMlQjIt2uahFiZ0e9yN7esq9U4p2QHfWUf2Jsc86sL163wXWar2Drqe1H.If8aZrqup0e46smlM4bVxflFCoqGbA0RpxiRuSqndZ+Jp2gET.movQyZmAL9vTj58NwvnRJwmVR7URc6owfLW+yTWOzbuP+CL7smV7Ic8oA.0XN3Sv.cyoqDOAMpjDHUcYYm8gJpoNbtH1Op7Xhjey1P4EQRAzoSOaZlb+A3JUVzz2hLVfIfjy81yYFWRallQeKOuwxJLpwiozFsAMprFb8gAS84e7mz7cUD3uLhGZS8XNCS2Ey82+DC6qCpi2HyWU9cS6.0aX7DKaOFcvppUzwe0Vi.U5KT761pcq2doCu9CDjA9mAFkLx+MJkhSixpoDGOYvLMx0e7N7qAG45mX+O9mIibMM0ZOv1ii6MGFroUoGZSqRSl+IcferP4Sl1ruAldUCuCN85rmmlAySCOueVBnRyDK1PJYRzXuwXdlI9wJ2aVTZZrxyBM1jpe6SxMsYUK8HIqZLDdUdMI7p73X16sdnCQ8nuXO1sdfbgU9+ZtvwxkLTd0JVUCuD2EH4Rtsd36RZSQSE7PHI5Iy2tF040F11WHtpCU8Skdl9EU8V4mgdGpcf3kwzWny8D0J.CDWE7V15D7YRIiqGDt53539Ra6rpZHAKOqBVYVEbiYUvmOqBt4rJ3VypfaOYAw+yuDSDfT+PcRsiTIgllGwweykpRTi+GPjo7+6
-
HiseSnippet 2362.3oc4YsraajbEsaI0RVzddk3ISxtBBAHzCD3HJqQ1NAAh54LDikDgnhmIqbJ1cQxJpYUM5pZIwDLqSVlsd27IjUAHqh+DBRVlM4SveAI4dqpaxtIorkns7iIBBRruUcu0oN08EqtQrzmoTxXG2RG2Oh43dKul8E5ta2kxEN02ww8881mpzrXhUzV8inJEKvw0c1u.E3t3bNled1FaQCoBe1PQNNORx8YOj2iqGJsQsuhGFtGMfcLuWtYuVs59Rw1xPYBfmY8VwIh5eBsC6.JNsY7b9Rppqi6m5sxmuNicu61NHfd26Fr95q+f6+f0dPUZ6UVi1p55OXsUW6dqd+601wc9cC3ZYbSMUyTNtyskLneytxyD1E3QbEuUHCenpSSXksh2SFFfaQTpy1c4gAMxHJkiiqWigz1rVZ61d6yC3CjOj99Py.jgZjm.cmoH7ls.7plGdqjCdS.Rt4fzbVH8QdM8i4Q5gif34ld0EvoYaJbNkGJ145LyeYNuskvLD5J8nmv1KFdXfFkWekUVl.+4N+hRkfyJklD1Jj7KIYpPCBdHsEKr7RmRCSX6vUQgz9KsLATCUBlcEESWdIFruovVCFpMMTwPC9Ye1wc4JB7K3.PDL8Yx3SpPNtKinXvpEPnwcR5AqC4LvAhzhQzvXTecBMjH.mDhrsQTptjxs4gr6TgTW.hA65SUrkIb8OSQX8ZwBfC4kIJocP3WT2.VaZRnNc6EnhDv9aWQGtfUoCSuiJ5.q0Oh0lEy.+8xKYIOxdeSUX+rjx7ziaed0kraKhYeIXr.XIjif656L.0x.VExAxyFfm1IBQ+kAE7oIJFoNoGDzPnl8AosDiIi4FahmUnQ.4IB+tTQGjcITfzBYZRhhfF.4HvvvFiQCpPPn0TR5HAQZYAlCUrKDEXD1ShJKOERBjeNFFGzSANr.opfsRJqg6Df0PxC4rxKE0i93DgxmFxBVZnySLqcLS0ESCDOjk8iYP3fQ3gs9sLecYPi7SEcgLeXaZXXKHGQYfn70bon7cJ86KsHrs1iGC1GVafshyNnPvRIQzX.3fGsYheEiEAaeROt.2rTMouLgr8lGPLrHKuB3YUq9jXdmtZheH2+DtnCryQ8yQLF6BK8ivP.xYTEdhI6EAGDLjrFL+.JvhsRzjtr9kV7TZLwD0.LgwU.LQirkt7RFqszcpjYXjTVzrT3giNFBOG3nfFODiCIryi.BDQfRGCnszhogfVaXTqrYUuCXuucLhVSisTc4pXTeFOSjhCjZ1goDdousDYzgZ2dhigYJhkggfEmzv1054nXYQBD4FurkpFLQHqWwTodWbpz7Y58sItxMQontfqOLhItn7+NoY6fO8qpuCUSw7uoxf4Ewh0bDBt6vNEp9YyFun2NL0IZYjYt8hjBzBtyqMi9do4pMIOc3AXY27YPcNG1QtXQx9YeHKCZ1yZ14f877VoBTfX7pAPcHYPRHUWr3DVBOc.flKTQ.y5KTbc+7k3ekUw5xBwOxqAW62cxXblIfQ3v35.io04eOuca2FhnFBv4716ad8UTuTpiBrl3heKugkdlT4b2+n2vXnnXFjJicrrA3QUVQwLRGAXDJvDJ8OoI+2wFOvKxBgsvYTFSIJXgpoI9b9KMqT84enbjLQCYx1mBIzvvhCR50DZXvmscJ5vHhYvvT6yqjEgzjIBLO7egeRGrJ9ra5fUyFLWDdZwdywQ5mcbWvx8CKz6rYXn7LLtlm5kBmAFYMjg8i5JEbeTjcFYHcSnvJlDvBWn41io7PzstYhBx+DbnnILYSG0ty9HVrxX3EvPbHH2clCfpD.wtGzIgLteCptKFufoz.mSH6s+.mzBXMuehs05BCiVMqIbKwAntmIaEzBt6r4RwYcQwmf.vYrKTc0ivQgR8NlZL39wXSb5ykBYbpy6Ewnm3T.82DPeLqhYfwgYpFu..NWd.5LLwwwP2iLsJMYsf4aOmLrX8.6ZKfdbfpsNCp6hCrfmcifKCDxbdVJ+zbyak.YDrwqEjfLhHfcdlS0tocbZTOyQavBgXs.4fcLTjb9.uf9POWbeUEyfShfLC7xRPW2aT3KPk8Dvt6yEoNJYov+0Oce54iHChP0rHLGUpru6IO4utQySXmY4nToOsye9iqYcDOtK1GC1DqSNaQ9CO4m7ye5N1l7GaMbd9.CXqQAVMYsKEv9Mq8m9Waf.6Fdap0POqNiX650lLnpW60.nVz6HVHC9VEuxP0y1X7yvZWNT8c+y+y+vfpE7NBcLKfoYcb9vK.SOaiqNSAfZDLYLzXXxH098maxCX1LqiY9KzsJWj8BljXUuJ48xT4ZJw2sFl3q5a9Lek75ICr7aAJ514JrMXFiyU4T+5rP174Pb9BGEf7Oz.YnonJCmv3HNu5uTPddr+4gQvld6WMXqqhqfmGMH3B7AJjA2MWj1MtbQZPT0XQZPV8KLRKaguzQYalnk8ftKCFbRkd.UvAeJNgJn+a9iHURqu2cDYc7Jb1.Qxv+wqTbBGI14+BNKloPBw2kIG7HeRjCJeRjCJ++SHmOvTbbvsKNdQiz5pCmw3D1n13ZpP666k+dPeyWpcD7Tf49QCxLVXNiyciXjqR5wI9cOJ3IN6a8dhuftf+au7.rj29.L3Qg8cFyRSYivuJfkm2lAAWgVfK3DV3gsjxS5QM2wxTcgp4ultOwN3M89Z5oLyaxzb+Ger441x3djufAcPh2wX0my6x7ueYeWlQW52k4g9Z.BGGSEpHohUs.Ky5wOVJXpBRGQiUmnFqVj70Ihhl1JpvrPpXOfJxMuaTKS3p4E1fJJXL34BVZe7B3xd7euwtB7BoaZdWcGp7AhgNhiSijPE6q4A5tUyq3PwqlW7WRiCfyP+BWt6rOu2na0o7M5N+acuQ22AtB+B2O8hYXrIGqesKzubHD4Zv3OvKMqPlzhgd6KExrqHc3A8QLcLuSGVwDOSZCkdeJCjb6ZYWlw.Q+zZOD9hizXS22SGWT8JeW8S775Gmd8ODLeA4c2W8xreu9Uub4i9fTfuceJ9IdPp3UIliRxalyxWGuwlWGqQOper7wo8EiA82vHA12BSqvK5sO9Lopyoi19SOnjwi88KZpwTb0oUw6NsJt1zp3mOsJt9zp38lVEu+KVQrhdZe8XrAzYSicseEJWaSMlvDm+GeRmnwC
-
@ustk ah nice, we had the same idea.
your expression node will then make you have to compile the network
you'll still have to plug it into something to pull the value into the script, so it's fine, you would fold that modchain down anyway and never open it again.
-
@aaronventure Yeah absolutely!
The difference in complexity comes from the fact that the difference shouldn't be affected by input level variations -
@ustk @aaronventure - yep nice work both of you - here using audio as some sort of input...
HiseSnippet 2488.3oc2Z07aaibEmT1zNVIa6tcSP6g8v.2BTY.CsVxoaBPQa72YE1XaAK2raOkNhbjDqolgfyPaqVr.8Xu0yom54do8ZOTf8efBTf9OPAJPO2+C19dyPJRpOhkU133rFFIZ93M727adueuG8nlQBWlTJhrrW4zAgLK664zZ.W0a2dTetUi8rr+NNGRkJVDwz0NCBoRIyyx1dgmhcXuxhV5e9eOYGZ.k6xx5xx54BeW1y766qx5s4VelePvATO1o98yM6GtUCWAeWQfHFvyBNaXERcOi1kcDEmVIGK6k12yWIhZonJlzxdwcDdCZ0SbA2L+m6K8aGvvF0rZAKjo6CDAdHhwOasaO+.ulo6aokksSyLVXACKbemC887G1eFa795AHYVjmOrKUDdKT.d0xCuMxAuI.I6bPZQCj9.mVtQ9gprQP7bWmFb3voCEn87PwLWqR+kEc1U.yfqp1mdF6fHnwPKp7Iarw5D3eV6mVtbYf6kJRP6.xOijZC0y6Yz1rfJqdNMHlsmuLLfNX00IfcnUvrqJYpJqxfMNE1avPcnARFthe7GeZOeIA9ENPIbl5BQzYUIm1iQjL3o4QnQci6COGxEfCAoMinfwntpXZ.gCG5DQGcWI1RpzwOfsVURCNzMrttTIachu5GKIr9sYdvo75DovLH7KZqGqCMNPkr87jgbX+sOuqOmUsKSsmL7HypeBqCKhA9uUV0vdjC9h5v9YUot0K5bY8UMaKhdewYLO3QHFA2M1aHpEdrpjiDWLDOch47AqCF3RikLRCReHHfP06CRGAFiE4qWS7vBWDn+XtaOJuKxtDJPZALEIVRvE.4HXggMFi5UkfPqkfzU.coDEXNzvdPXfty9BzXw4PPc94nYbvNI3wBjpD1JIrFtS.VCIOjyprJ3W7HMYXFOh0IhI6ggyQYrqaDChCzcdb6eMyUUArH+TQWG8G1kFDzFh0q.DjqxWvqrV4ea4UfsyA9Qv5COSfkhROfPPRIgzH.vfqrdheFiEBaaReeNtIoJx.QLY2sOhnYOVdCvyn1CHQ9c6oHtA9tm4y6B6Xz9bDhdcgG8yQWexETIdRI5GBG.LjjFNeOJvdsiUjdrAkW4bZDQGs.Lg1E.VhloO5JqpWsUWqZ5BijxJ5GEdnnhf3xgNH3hGfweD1kg.AhHPph.zVdkjPOyZnMqh9otFrde4XDshFYn5J0vv8TdlH3GITriSH7xeYYxnC0oyDGCUHhDAAvJNogMOqWggU3wPDaz5FpZ3DA4thZnNSWCMuDuqQvJ2DE7Fbe0wgrj1iqxZknxAe5WzXOphhBuI8AyKjEo7QHXuG6bHKlQFdEm8XxyThP8b6GJ33JXujRO56kHRqEMs78vzm4UNstD1Q1XxtAoeHU4LsshcIrdNNaTExLLdZ.HAjvKNfpJlUBSEmL.PyEREfx8bouZP9T0ilpZwYKUUVlzIRnyHb+.ml9J2dSFukl.dgCl2z3MIw+64remNPjVFXWz4fu3lKKe4DGH3YhO764jkJZR42s+8NYwVgQLPhicpnI3oUQRQkpS.LBIbBDtm0x+2vFOfLz.gcvYTAkJ4r.47D2tzLyJ0dkrh0IhXEnvcHED5vvkih62BJfvksaB5vHkRX3qo8FoQNsXbOciuF9IYvZXa6jAqkNXtH+jj+5iijOaYurg6yR7a8bVjDcTsWFCLgPysCBDWfB.9ItvvghtulhfAg8DbeWrKyLRg91PlWTsvf+OkJOk5Gf97shkfPk2w7Vvj0kPi9YGAYO.h8.nxBQzflTUOL1Ak5.mSPU2cnSZArl2OwT5bggwUMsHaCwAfruVECKwdAbbCcXd735urCHeA0vOUnXFd7mbpgW0CMmdqkUJBJU.Alc6UPFSBAlQtNHPGYhs.MnRF9sg743ntz.KcJW7TaHPWHGPWxIjQOqHNuKfyHVU8.iivDKtB.tXlb4oPcyLkLIcEm4Zb.0zUCODs.s.U2A0aTyZXoG3HK6X.Otzf5vkoY8RROsSLH9YjlJzCztA2ic4v3mgKZhJZwytgLQ2wNwRXhtS9r5dNMO43c2uUqFG8zB7wJK8Qez+8qGiSJkGGvQXZKXidnOO4bJMIxi+pCoWNZea0RwBQkwj99Su7k+smz5L1EFTajqLaF8a6ly9e2e9ku7Gt0dlWuXj0EYkWIXrrFCLa8GtRvn68W8g68udh4c+Z0WHf2sf2MOtrd7la9edxjw0C25Jv0ubBjDHdNK35q59WevVlfkSXoUlZM1ZMcBaJtQKqCOp8VMh5tYQT2zATEFwPK5zS2wnqU65qHBYC76xoA6CovuBNJs9I6RudBjkxA7xN8EdSPL+94f9vYLN5yY9ri8Tbbub9U4OSK.jOTCDnVmpYSXbbj27WqbKKgkHmEnn0Yp6sCnPLytmK4.uPd8o3YVPizNW3uyLIKAurfIJzz81wJQenDOMwVHVdDseMhJvqvIG7+3eSoIFxpM3JXxR2baloIGUH45639MNNx312lbaL.ZRdMX+iSll4e62o46pSH8hXtDzGAKGS3KIWV1LFeuN5Z7Fodw5ucpWLMiV.iNZT08Lm+5gl.qjYzP49aV2gW+BbJP+yghRA6+FURwqcccUuSWLXtJg7O9R7mQKg7m692+GokPNKwZWyziS6MgFMoUsqaRqZWs9yzpmq.UdmY06ajpwMz6nUiO+9oE377zy6WT.p1bohM1hbUxXuwTdlK8wMekdQ4kwpOOxX0m0ZZWXV8pV9VhW0TD7170TvayaG0d+nqaQT25C1S1VWSsvM+VsV3T0RtNuNbhJwxl.9qkHwPad2pTmhz1zaLGD5NBwY8o5+78y0c3k+FfdfYv6574zyY5uDL5+veOP2tiHpO4oLNKBuJqZuhuFL+yY8qAS3L+0f4XWE.gSinbYnPxpkekGYr5EOdTw7hS2zUgYgauCfsWt4cmsR6rd9NaR4EVLncgU5P79ZxZtOGuWyV5upGGKcgMKcjXxlwAR1m66o5kac+245td9t+TZjGbt3V3dAWXluWv7W6TwqKM27mvszszapudP2n245q+UD+My8btRJFa4i00sOjGO.BS0X764jHnj1aw3rCEbQ5Mqk4AbBSE42sKqnX+j1PaqTT2yx549acBCzSk4h89Qa8LeNHwpqJX93hZW667chmW+.GCbIn3.4aGWs+Buqc092vQnf946NmzeeGPSuNQebSd6edeS7sF3l3Yzm5FIdQxaAgBF2Q2Cru45Z.Ww4PrMol04iV0UeH0yKbcKtTiYX840vMmWCe37Z3OYdM7SlWCez7Z3iuZCwJCRdeBLNAJWp495JVssMUJoCYr9+.8B7VXA
-
@Lindon hmm, doesnt seem to work for dynamic processing however....
HiseSnippet 3277.3oc4a0saabbEdojVIKZmljVazb4.gBzU1zTbo7OEQ0IxVxJgnQxplJNIHnQc3tCI2pk6rXmgRjsH.4x9J3dUeCZuMWTf9BTf9HzGg7FzdNyr+RRIJxDqXiJHXwcl47yb946bVNiYCjr.Wl6wh.uvPlzvnzhGFwcXBAOxnzpGMLjYT5FlMGFH6tSWpWfQicMJ8SL2mJjrHhdnmLLjJDLWiRkV7ivAJs5RFpe9tO7ITeZfCKaHCiWv8bXehWOOY1nGt8uwy2eOpK6Hud4V881tgCOXGtOuOnOKZVyHj5bBsC6.JtrELMJs7Sc8j7nlRpjILJszS3tCa1keVfd8uvS30xmgOXazDXjd3839tnFie1Xmtd9to6aAXELyYEVTaEto49dtdoimYMdG0DjLJxaOJsPQ0awBpmcd0qVN0aBpTobpzRZU5cMa5D4EJylA0mqa1H.bNsofYOupnWqwB+skL2gCqHPVsG8D1dQvCoTX8fZ0pPf+Y8sJWtLX6ERheKexiHIzPcc+DZKlu0ZmR86y10SD5SGtVEBPGREr5pBlzZMFrwovdClpM0WvPNtwFG00SPfeAGJIfIOiGcRUxQcYDACjlKgF0oeOPNjyf.BRKFQByQcj8o9j.voS3sUCESKwpsmOa8pjFAvv.ecnBVEhm7WJHrdsXtfWtBQv0SB+hz5xZS66Ki2dthv.X+8zfNdArpcXxcEgGn49yYsYQLH90ZMs0ir2mWG1OqITOcb6A0WSusHp8U.i4BhfOhd2X2Tsl6xpRNfeVp9ztePvvJ.ANz9BFoAoGjDPnp8AoMGywh7T7DcVHSfw6G3zkFzAstDJXz7YRReAAY.Zi.FCaLF0sJAUslbRGNLjjWvxgD1ERCTC1iiDyOERpyuFkEGnS.QrfQU.akXqFtS.qFZ7Pal0ZPbwCUFC87Qr1QLQWLcNJy55Dwf7.0fOq0ef4Hs.JxuTLzQ8gcn99sfbcKv.4H83AVqW9OUdUX6rmWDvePlfUJJwAgJIkDRi.EFBkUK72vXgv1lzyK.2jTIYHuOYmGe.QY8X4I.8QsFRh75zURb78bNwKnCriQ5yYPT7ED8KvPexYTA5o38BAG.CMRoq2kBVuV8kjtrgkW8TZDQks.VBUH.vhCSDs0ZJts15USXLZTVUIJzoHif7xz.Dj49X9GgMHDLfnFHjQf1Vd03TOMOTjYoj55.+95wLzRZj1TaYio6I1YBO3.tj8rXCd4utLYzoZ2dhygHDQbeefiSZZsrt.BsB5CYrQUzlpzEBvcEwPMOeLz7P7NZ.qbKjGzHvS9rPV7yiixZDixAe5SarKURQf23wf0ExhjdnJTZW1oPULML7pl6xDmH4gp01KjGfbnzxR0ruULHsBzzvyEKelG4zX.riJgE6Fl7gDjyjmkrA.+LMqUEpLLdY.n.D2suOUVrpDVJNdBvLWnT.B2GH7jCyWpdzRUKc4JUkUIchFzKo59tlG5Ic5NY8cgInufi4Us9FW3+sLeZ61PlVlxtj4de9UWU9xwAPfLQgeCyrRQSp9do+rYVtUXDCf3XGwODhzrDTDo54fNBEb74Nmzz6OxFOgLTqBOAWgEBUFv7EySd6xWZqh8EZULdNuuDP31mB.cX5xA860DZfvgsSr1gYJKfou5mqkj4zDZuU8v+E9IdRa74RwSZmLYtL+3h+J2Q7mMJsh11mU323ErHAFnVZELwDRMeruO+LD.vKNDFbJpwNj6OLrKOvyAGRuhDU+wPkWDsPq+eLUbD0yGi4a1W..UtOKnIrXUKzXb1AP0CvvtGzYAOZ3gTYWL2Ag5ffS.U2IMHsftlONQ25bgoQtlzjs1vAJYOEJF1h8h37ZygV7H+WwDfufd3OWUQO83RNgvoIzb3sFFIZvBEz.8tcJFiIoA5YlEMPkYhOAXPKnsuMDu.m0g5anJ4hdsTEcwbJ5xlgL5IE0yqC5YDqpZhw0vXJlhBtTFb4QPeyLoHtbU.yQG.pLWMbQsELKP2cP+F1FosdfyrhoV4QVCnCCRp5EWd5I8AvOMzTgQfma.u53fz7mTlFihVz2k5xfNuEiDzbCsoPOyj7V5YlIu0Bi3sV0bGefuvFN1UU1zKnspHTp1lr12FwWxschoPKyB6yRKm9D7488BhWZVQp8oCFYru6CaJYgHxagwNgcl1njeTcvCzNZnwXb13hEci+43htw1iH5+5Ke42dAhFxS5GcJqfr+1W9x021X121ewLJ6qYxTUcyK7e+RFeyucdD9rZyudrvgt4MFiUSQ9u2DL7Vyrg2KHreg8927Aat4sl1d2ZBxFpyMiFdnX6HBOgQmg8nkB0TLwFArr+QEi65YXbW0PbElImYorYOt6DpRcybUoRWw3lnbjeYKQ+V4jddCRAw+yThGZcqZ1BFW54I+6UoxkwN9yfQTuYRc2m.YpWZe6xlTW25mias.jboboHlWV3AcHrd3G2Wx6Acrpdyic0eUQwBxnPQckFUvtB9K3u3WQ1Di2UDLEK4BWcalyqHcgdEdCOtwzTzu0qSgMZEZRQM33iaL0q+0+fl2Vgleb+.AzOLP4XvcwEBxVw360Q4wqj1eq+iS6uqnqs53ynilUcCs+WM0DrJYDE+MWn2VWcgCiQPgPhBsjNcDk5yChRA5+AERwsUc0QVc9fAqLtI6KlZaV+kWh+LZaVefy+3e04ueqsur4ZyX4wy6E6Fsnk8rVzxd53OmWyPELkWa96VGLuWP2xyXbZAaddyy6TD.xdtPwFiISCF6UFxybgOt4EFEkGFq97.iMs72LPtKaT0JulDUcN.da98DvayWO589gyZSTu1mrGuslQrvM++.rvUh+xeTYxyRNdJMuY0ox4hfdY+ReKxfuub6Ib9I8npCfXtNEx7mg0szSdcyOidJScMdTGNvsTO2lG0i7Qr.VD98fZeAWjm+8k8h7DdouHOOyQBpvQQz.QHWvryy4QlqdQWprePwkqGpvpvs2dv1K25t11ICVO+fGRCJvL34BbZe7DmRd7+7gOM.OY1lpKqxyDNvlkNRZ3g88ErOyyU10NOgYCWO+veLMxE7KNENYyEuzmrY9CNq3A9la8S3bFW9U0Eb5J8TiekdH2yv0EagwuzbuiYSOrstmBkw8gTVk99SMiAjRFsXN297.dx4DlEM7blLxqSGVQr9Is4drTRcNIajat8yY.drHWd3uX6OwK.fnUMEbA1k49rZmzIXOQe26YpUWBBTPds5hJrRxAu+BvI4fRWiYl7HIc6XOcs8SErizWliLWZCcuctEAwb7Zw7K5XF+VNL+Gh9OD2DiEeS6lXbECGAEKHuwbma94lPAr5Dk6l7iu+9p3RdbUHidTmH9wwukGhHdM0Hv9NP0j7pl6iOSrMNcz1R6A0YO1woHqFiv5yKgaNuDdu4kv6OuD9f4kvGNuD9qlNgXaPwuuDlm.8Fd3SUsmWpjtsPUJiQx8NVegrvP6zQBXC1yyW+x.3EWFRkv+n0japunCajbwDp5JBStEiFK.u9IzPAORZslP5pVYUeuVpqba4xGPdDo9VDxFanuLV3ENN4paASqNN4i6.Y9v5ZQq51ptupO.qtBeOW7RnpVh9Zbe2GTgXWG9XUa7pipOO3KlZ8ZhIWQaJ4k0mk9wJpc5xbNoEef0ZomvNrCP8lPwqJEgGQZoveHwKPc7mkw6.QHdkbeDIGOvQWKSDvjoJjdj3qkNrcpEqPjMvOCRT8CXtf2Gf5CuesKoESdFiEPpotZz1kUW9g77TMfhk2890p.+lwPxc.te+shYJ4B3p51hK4.zP4ddCrnUZUA96w56NGHMJ41DK66lar6PZAikNPpPpQhfW7IJ.uBvJdm9bqJYKGuj4TRaeNUc4j+xZUr+ckKK75DXM.kmM5vHuOQ.sJ5HqaM3W+H8k+GjfxpyhJG+WMAP.fWaqDGBHI5.qdd.2pXuNxK3eFrdpRxC7Gp3ifbVWvLzB14nJEaHDd8vxNLPG88nBzCCQ.oda7Bvq1E3+gAjXP8WdWabCbFMJbxpSltVg.n7zfN9ri0Kux8v3wQGDVrG2EYUcvLSaIrpeaKqA2wd8MzSQtKZ93QEF7Nf6d80WGlydKhdubF75kDQWJr.QY7gis0pX8aO.VWhI+1jAeU8j.vK0O.ucYsgLtrnIvkoCmTxodrqr58yKoaWqZsGTGF5qpCCVq5lOD+7lSZA2aqoImx5MVxVJd6E6F.qZ7z0yMc8bSqzS8Zzq.i8yQSERN9CNQLSSEDA5zcteM8+SI78SWEDnM9n009A.HBu49.dBjm0gI6BQvwXPJvjLEXPERA8pRLnCnvzvP+gGqeTSPbjVJZVxhSYpJtGwZ0v2.IGCN6bPuuOIOWgGw4ygttU43qdKPZHft5U4fJjD1s9VFF+O5Uao6C
slight mod -fix applied.
-
@Lindon looks alright to me?
you could also use an envelope follower instead of peak, as that'll let you smooth out the readout with attack and release.
-
@aaronventure said in How we can display the gain reduction value from the ScriptNode ( updown_comp ):
@Lindon looks alright to me?
you could also use an envelope follower instead of peak, as that'll let you smooth out the readout with attack and release.
nope its not -- try playing a low velocity note - the UI reports in the 13+ range, play a high velocity note - the UI reports around 12,--- and the two peak displays are showing there is very little displayed difference between them at low velocity, and a considerable difference at high velocity.....
HiseSnippet 3262.3oc4a0saabbEdojVIKZmlj1Dzb4.0BzU1zTbo7OEQ0MxRxJgHVxplJNIHnQc3tCI2pk6rXmgRjsH.4x9J3dUeCZuMWTf7.jBzK5CPeDxaP64LytK2kjR7GG6nzJXDwcl47yb946bn1SX8jr.Wl6Ih.uvPlzvnvhGEwcXBAOxnvpG2OjYT3Fl06GHauaapWfQs8LJ7iLOfJjrHhdoc5GREBlqQgBK993BEVcIC0Oe66sC0mF3vFrjgwy3dNrG60wSNX0i19C8782m5xN1qSlSemsq4vC1k6y6B5yhlULBoNmRawNjhGaASiBK+HWOIOptjJYBiBKsC2se817yCzm+YdBuF9L7Aai5.izKuO22E0XbUica646lduEfUvLiUXQsU3sLOvy0Kc8AVi2PsAY.EYsGEVHu5sXN0yNq5UIi5MFUpPFUZIsJ8ll0ch7BkC1A0mqaVK.bNMofYOqpnOqwB+0kL2kCmHPVtC8T19QvCoTXcuJUJQf+y5aUrXQv1KjD+F9jGPRng559XZClu0ZmQ86x1ySD5S6uVIBPGREb5xBlzZMFbwovcC1pI0WvPNtwFG21SPf+ANTR.SdNO5zxjiayHBFHMWBMpU2NfbHmCADjFLhD1i5H6R8IAfSmvapVJlVhUSOe15kI0BfkA95PErRDO4uPPXcZvbAubIhfq2D9GRqKqIsquL954JBCf62iBZ4EvJ2hI2SDdnl6Ok0jEwf3Wq0zVOx9eRU39rlP8zIM6UcM80hntWALlKHB9P5cs8R0ZtKqL4P94o5SytAA8KAD3P6JXjZjNPR.gptGjlbLGKxSwSzYgLAVuafSaZPKz5RnfQymIIcEDjAnMBXLbwXT2xDT0pyIs3vRRdNKGRXaHMPsXGNRL+LHoN6YTVbfNADwBFUAbUhsZ3MArZnwCsYVqAwE2WYLz6GwZFwDswz4nAVWmHFjGnV7IM98LGoEPQ1ihgNpOrK02uAjqaAFHGoGOvZ8h+whqBWm88h.9CxDrRQINHTIojPZDnvPnr5feHiEBWaRGu.7RRkj97tjce3gDk0ikk.zG0nOIxqUaIww2y4TufVvMFoOiAQwWPzOCC8ImSEnmh2IDb.LzHkddWJX8ZzURZy5Wb0ynQDU1BXITg..KNJQzVqo31ZqWNgwnQYUknPmhLBxKSCPPl6i4eDVuPv.hZfPFAZawUiS8z7PQlkRpqC76KFwPKoQZSskMltmXmI7fC4R1ShM3E+hhjg2pYywtGhPDw88ANNts0x5RHzJnKjwFURapROH.2kGC07hwPyBw6nArxbPdPs.O4SBYAWDvuQLJG7oOp1dTIEAdiWCNWHKR5gpPg8XmAUwzvvqZtGSbpjGpNamPd.xgBKKU69ZwfzJPSCOWr7YVjSidvMp.VrqexGRPNSdVx5A7yzrRYnxvnkAfBPb2t9TY9pRXo33M.ybtRAHbefvS1Oao5uyJUMsp3aZdjmzo830wEFiNBNiWF5XbA9Wy7QMaBYTCTvkL2+Sd0UMuXbfBHST32vbPImwUGuvexbPNTXDCfxXGyOBhnrDTDQ5ofNBEV74NmV26OvFMwKTqB6fmvBgDCX9h4I+b4o1pXe4Nkmx6JAjrCn.fFlVbX2N0gFEbX6FqcXFwBXZp94JIYH0g1XUO7efeh2zFetP7l1IalICOtHuxcD+YiBqns8CJva7LVj.CNKrBl.BofOz2meNln6EG1BNE0ZGw86G1lG34fKoOQhp+PnBKhJn0+OfJNl54iw406J..I2mDTGNrpUYLN6PnJAXX2G5ffG0+HprMlufPZPvIfd6jFjlSWyFmnaQN21HWSZlVa3.kriBsBakdQbes4PKdj+qXBvTPu5Wnpn2dTImP3jDZFbUCiDMXgbZf91NAiw3z.8NyhFnxLwm.bmEz12Zhmg65P8MTkVQuVphtXFEcYyPF8z7540A8LhUVswnZXLESPAWZ.D4wP+wLoHtrT.yQG.pLW0bQsELKPWbPeE1FosXf6rhoV4QVCnC8RptEWFZmt.3mFZJ2Jvy0fuhXuz7mTlFihl22k5xfNrECEzbCsoPuy37V5clIu0BC4sV0bWefuvEN1UUzzKnopvSp1lb1WGwWxbchoPKyb2yBKm9D74C7BhO5fBSGP6MzZe66UWxBQj2bqcJ6bsQI6p5fGnsyPiQ3rwkK5Ze8nht11CI5+xye9WcIhFxS5FcFKmr+pm+7021X1u1e5LJ6qYxTUcyJ7e2RFe4uYdD9rZyudrvgt1MFgUSP9uyXL7Vyrg2KHrat69W+u9lu4mMo6t0XjMTmaFM7Pw1gDdBiNG6KKEpIehMBXY+8JF20Gfw8pFhK2NYLKEM6vcGSUp2JSUpzSLpIJC4SaI5WKizyZPxI9ehR7PqakGbfQkdVxegJUtL1k+.XD02.op6NPl5T6aW1j55V8Bbq4fjKjIEwbZgGzgv5keXWIuCzwp5aarm9OITrfLxUTWoQ4rqf+B9M9mBarw6JBlfkbgWcWlKpHctdE9AdbioonaiqRgMZEZbQM35iZL0m+pePyqqPyOoaf.5GFnbD3t3BACNwn20g4wKk1eq98S6uqnqs53ynCmUcCs+Ws0XrJCHJ9cSnuVu5BGFgfbgD4ZIcxHJUmGDkbz+cJjhaippWM0ECFrxnlrOchsY8meN9yvsY8qc96+iV+s2d6oMWaFKOdQewtgKZYOqEsrmL9yE0LTNS40l+t0Ay6kzs7LFmlylm077F4AfrmKTrQXxjfwdog7LW3iadoQQYgwpNOvXSJ+c.H2zFUsxUjnpK.vayWP.uMuZz688m0lntxmrGeslQrvM++.rvUh+i+nxjmkb7TZ9gUmJWHB5z9G8MOCdQ41Nb9ocnpW.wb81Fy9Nrda8lW27iomwTiqi5kC71pmaxi5PdeV.KB+6fZeICry+bZGXmvodfcdhiDTgiinAhPtfYmkyCsW07tTY2f7GWuTtSgWu8gqWlycssSVrZ1EOhFjiYvy43zA3abJ4w+868n.7MvVWMTJOQ3.WV5PogG00Wv9XOWYa6rDNX4pYW9CnQtfewI2aybwKa1krmyYWZ4qbytzO.dm0J37gl6s2vrtG1w1ifJz9P1nRG+wlwXMIqlOc5.d.O4U.NvQ+TlLxqUKVdX7wcgdnTRcNMcku7rseJCfZEYRw94a+Xu..8UUue9rE1y7Kmdr9q2wTqtDDCf7h32VZ57aWdje1vrURdm5OCbRNnz0vgIORRuN1SVa+HA6X87XLvkVS21lad7IGuFL+7NlYZnEre4OXEK9+zCVwzC0.38jqziGyO0Dp6Tknbkjue7kuJlGiWExnC0IheR7WHCQ3tlZE3dGn5mcUyCvmI1FmMbGjcf5im33jmUiPX04kvMmWBuy7R3cmWBu27R38mWB+kSlPr8k3uZCla.swcziTcRWnftCNUZhQxn.qmcJLzNck.Vu88708siyRLj9f+RqIukdlD1HYFBJ6JBSFrPiEfuoHzf.ORZslP5pNYYeuFpofsXwCIOfTcKBYiMzyMENCvISYErs5M+dRKHaGNWCZY2FU8U00sZK78bw4BUcD8jUe66UhXWE9XYabZN0u51KmZ8YhIWQaJ4E0u16STT6zl4bZCdOq0ReY3vM.0aBEmpIBOhzPg4PhOf5MUVDGWgPbJYe.ICOvUWafHfMSUH8JwSJNbcpDqPjMvOCRT8CXtfV2o9vWE1kzfIOmwBHUTSqrcQ0bJjkmpETr712sRI3eCXH4V.2u6VwLkbIbUM.2RN.MTriWOKZoFkfeehdL2.oQI2jXYe6LqcKRCXszERERERD7cThBvoxUw6zmaTZvww49lRZ5yop4E9ypTx92VrnvqUfUOTd1nCi7tDAz5mirpUue0CzyiOHAkUmEUL92ZBf..ulVINDPRzdVc7.tUxdcjWv+o25oJIOvuuhOBx4sAyPC3lipTrgP30AK0v.cz2iJPOLDAj5swYRWcKvY3WhA0e1sswKv4znvwqNCz0RD.kmFzxmch93ktCFON7hvg83tHqpBlYZCgU0aZY06V1qugdKxsQyGOJ2h2Bb2qu95vd1aQz2kyguIHQzlBGPTDe3DasJV8l8fykXxuIo2mWMI.bp9A3sKqIjwMHZBbY5vIkbpF6JKe2rR5lUJW4dUgk97pvhUJu48wOu43Nvc1ZRxon9hkbkhudwtAvpFuc0LaWMy1J8TeF8IvX+LzThjg+fSDyzTAQfNcq6VQ++7B99omBBzFc0pZ+..DgCSOfm.4YsXx1PDbLFjBLYfBzqDImdUJFzATXZXne+SzOpIHNRKEMK4voLUE2iXsZ3afjS.mcFn22kjkqvi39YPW2pX7TxBjFBnqdkNrDIgcqukgw+E0xyiPA
-
@Lindon But the readout looks fine, no? It's gotta be your Faust node behaving differently with different input levels. The converters look fine? Your differences being visually different at different velocities are due to the gain scale not being linear.
-
@Lindon I agree with @aaronventure it's probably your faust node that introduces differences that depend on the input level, which is expected from a dynamic component
-
@aaronventure no precisely - the readout doesnt look fine...
So you two explain this to me then.. there are two peak nodes... when the velocity of the input is very low then they look nearly the same, - and the UI is reporting: around 13.6 - this is clearly wrong.....when the velocity is high the two peaks look very different, and the UI is reporting : around 12 so to start with this should be the opposite (according to the view presented by the peak meters) .
It really doesn't matter what the signal processing is doing (faust node, SNEX,something else, whatever) - the input signal is lower than the output signal - and the UI isnt reflecting this - AND it isnt reflecting the changes between these signals when different input levels are in play...
-
heres what it looks like when you play a low velocity/gain input node:
- and this reports 13 in the UI
and heres what it looks like with a high velocity/gain input:
- and this reports 12 in the UI
-
@Lindon makes more sense to put the displays on the UI:
HiseSnippet 4166.3oc2aztbaabDTxPxh1oIswYZ+4MrclBYSQS.8cb0Ta8UhlZKywTwNcxjp4HvQxqBDGJ.nEYayLc5u5CTe.5iPeD5iPeCZ28tCeQSpupsiS4jXQb298t2t6c3HaTBKvi4cZb.OLjkXXTY9VQBWVbrHxnxRmLNjYT4tlsGGjzeu9TdfwQ6aT4dlL.wn.p+tC61kE4KndF6NNjFGy7LpTY9u.grxR2xP94e+q2k5SCbY4CYX7RA2k8T9.dR9nsd7ug66eH0icBePAnW6wG4JB1S3KFBR07lMMBotmQ6wNlhfMmoQkENvimHhZmPSXwFUt0tBuws6KNOPA+K4w7N9L7Aai1.gTCenv2CkXbTi85y88xz9XvVXVvVLuxVbOymw83YimaS9D4DjbLJZOpLWYwa9RhmcQwqYAwaJhTkBhzsThzO1rsaDOLIeFTdti4QAfOpKEL6EEEErFysxGYtm.fHHow.5YrCifGxvvZilMqSf+Y4GUsZ0G9PxyCS3h.h8mS9pXFI06S73wg9zwjNxvfXDxcdq9Qx7ufkPR5yHwRQmb3WSFH7F5yHzX43kkBRLDk3xpBQLwIjWSiHdcZKGhrCQFH2nGKYeENp3W0zV0Zmx.mZnhWf0yRiIV7.BfMwkB1EDxPF8LRfvCehlPNGDafFHsRDjNJXNHkZZofnDCxO2d4BhMRIaPlSE+2PrsP2SY3ctP3sQsJGgc+pCO7fWb5SO33u3juDPzdiU2ZMkdeReFnOzHsNEIBYQIbVrRoFKFBJb.oG+0ET5ALPqPjOd3.XcQP.yOlLXHvLPssqClrbLQaBMP.3Fk517YA8R5S5JhJ5TKpe4RwNj+TUBolRsdpDwZedY8oNBPAIAl2t52kpc7Xx4PpFh30rnHtmRK7XcoC8SJxHQW4Ln+rA42pE9gZWcLj8AIWHtvyaHZrDDWPgEC3+QEHGd3IkrdBAwxmeFi7Jdfm3bRBrBtNgk3tbipR+cCvx7BdPOkp0JCUqbp.NQoq9pApzg.bxmk7KiITOOBkDyGDBKeBofgQZv0FafXJEi2ChNKX5agwgooK.ZzBwzpVK6Z0Iq2D++RQhsblN3NZvs2poVxdEXaYLOzvAhLW3wco99iI+ggrnwRYIBEJcHBZdiXPJToNfxHnCI8QBEKvkZodFolApaBTFAVjpho3wMp1RZfwpKQ6ALpCTFwp6v.WL6l0xU+SUqtjDPOZBsglq6nVI1Pw5V.Csjv.Kudp.D2cECC7hgEi0Iff.qYnUWJ8C4a.0sbbIAM.MZ9sRn+lQmFmPiRpSFcJTItNY7oC3Ax+PG8sEnSyFMQ3k.C1X+gLhEpo7.dBGrCpgf0lghXtLWcykKfNXtUJVDKDpXkXAC7cnOnkyM0f37+mFDYHBRToMwZULREMRSLjNRpEh6KDCS3Arb6VOzvsTuFcgTLOw22p4HGmCkeP11CQT0Lik5OwMNuOOggSx6BkTh2m0EHnm0jl9kQUPQ2bydg4qSltiPqbJm8OrjYcZE+N9kyo7TZGLmhzMqqxUSFJgdG.ZTfspwf1tnPmUvTco9wLUZGY9e3+vB2ArjyEQm0.K4Akk.tAYHi5Mb.vGUMBcQapaxPHtJ.R5mUVPgKwBTN1xMHGEH0EYy.0IbLgKaPGlGziYcLCUhluEJ1nUOu3v.P+NHnGXCkEtiCOVQ8Wv.iDKXh9SpSpoZG5ztix5VQpWX9z3BMank6i1ubwLrlPp7.AAAigBzLWJlA8Hx.nEbHGqroFL44d8i3RZhsJhDAFGBbfRq8PqKTJ2CKv.4ekofQaDPXPwXTuFxleZKH8DvPIhRVNDw9PS3xAGHPjwRxkfQZwA7hg9kAiZLnJZqlrMqcjFOzlYUChK1rVdPSDqaDKtubYat0Uk1RN3y676Ytx09EA8RxHtDnNGxi.52C6hA4hxAgBIEp8DQUsBg.9aXrPPsIPRLu7lm16IGSjVOVQDPeTmwPEud8SHt9b2yvZe7DD+BFDIcAV+RYFtyglfAOk.qnCEFAiTF7dTv5gcc0mMt5RXgYURwcTg.8vTAZVaUSRsZK2HkvnQYIIqjEUifcEjEffD2GW+A8EGBFPTBhSvJ0UWRuzSQCIZVRtltdtrgNOqpMtYiT6LQDbrHg8bsAu52UkL4Tc6N04vLDQBeefhSaZEut.DsBFBqXgjRJgNEPXyVk2Am4r2AWwMX5pRXU.PQvQPEpmGxBl01NMzY4fu8UGsOjnD21mdr7t7fw1m8ZXOzpMAtj49r3yRDgfjtGDLHBPJTYgD4rejdKhxjlFbXif+HyhYNMFAZTEbq1iS+RZlyzmSfs.Ae2Dp6hRXFGVJQuuXEGNzWPgBK8NAxHJYzGaVbHajS5s0+O573w46wO3wZUToO.ZbeHvLU.6zKc6+20bMmsrWes0W2YUCnBzfhSr8ZauwlNaudgIbvYbr2XMmMZt0FqZHsnU12TtChL69QdvFDpUStqgiB7XifGWwV93gP3j37WAq7hCgvYXBYojpeWI6vsKaoks7JM.2xrksx95jZewuzQD4whdA0iOLt34hnFuMrAhhidN2KoOh5eFbF8YXFB7oQFFkDhEt.gvYBg3uOax9WkGFyabPCeh4yv8cSSJetG3g8nm.VJU5vFvCTH.Z+ZbwCC5s1ggbUEwerYKdha+oKiyMEYDVv8tPF0GgzGYd.z2iaRt.dKyC+52CmWjoh+USWp90RleWy71JJIDvlmKc7AXVuJyApj9Hjp72LySfFh8QGwNQzBf2B1YLTN5EfvCcU3KbOCimeyrtgJYaWDBKW8F0uIImW3JatruXukps3dOiBUyvkKfMPcXJoGiPpMP+byzzisgMqHe3+.ezSZiOWQOoc5jERuq6vS5mze2nxhJmRd2cFuDr8XTakEwruP92mfIjvk8bc7L3sji0R3ONruHf6hCofHUzeBzdUPRp7+kz3SnbebAP6gwP0HumGzF.VdJsX.3wPKBfg8Pn8QQzXrycbgDVOChZgR2tYQukj07.HzBqNe1R.fzMMisxzAh4.Y1K7bbmGmWYPTB.xgEMgvPdhwLEF0zSi2ondUY6bkXqRIuDavzYqZtqJamu.aWvD2dcYtdGfqQrFxIlF+z3bIr6V4o.OA1iCKIV2ZQ.yUEGIU+i7PeFnlPm3PIXair1DwYVzT1amptiOaTZGJSjqXxQfmk0U0K8xHoNGYZWMFFkb.vdjhmvueWkoPMyzs8p4tLaeQtVYN8SPUf4PVuj4d9.kAEVosPVSdPWYgkL4ME1OFSSTPgzX7F5YkExdBjnmwCz.pZp5YzQYOaCO2NgEpZCP8rJz.1VPnQI7LlNQWzbk0KS1ELkCjS26A3CscK+Xu11Mss2v1PG3OL50rT97ol1NM1RB11qt9la6rsyr35jpxhl.CtZL81lLYYwbttIfoDrlqsZysrc15px0Ya.uilIvVjLJA7Ln7BlqrwDFQvVbEMh7fvgETmsarsDJmU2XamsVCZEc1tNISJpPWYiHT.q.W0gHsOGa.JaMe40XxS2764zM2IOcya8rM1WT1lYNiryohqxuq4QwuDm0k5mZdgRoELkUMGH7lRIi6UnjQFDSyrVf.W0BGeTA9WzHVR.9To..MP0HGfow+hD3Zk8bRa0BXa3Y4OVRtEAGucMLt5QDKXR87blQvPorpUtNIETg7pgdxvDw.niQ8K.de0IxoAGTRiREkkhSIyJ3tf+hGF4LVjHQ4RLjy8dRWlUM1RE5+AeTioY7vNevDznjloEyfiOMaoBiOvCY9XY1+SGFDCoBAzeijc5RG4PLMUcRp7No2Um2xUStETZ9xadcQUoXWeFcxEU2U4+kSMUyRNZEtaJueBHJAX4vgzVMu7jHN2rjHknva0rHdcbjWGoYu9ewbizsA+aylWXuW3y1FsOictRQQcb8Fq433rYys2b602poi8lWuEZWyphyZCYSVtx95Wt58Un1zhtlvLMyfsOobhC6aX9m2fLWVBn2h4LtQ4xVcV00t3DPN2rDPN+PMAzp+Om.Z0OLZ9cy2o8wbUVANYBkMu9ITV8C6DJKpOtC4pgq25jLr9PeYx+yaw8c3tm2UHNa.UdD32nW1YwWuxmol7Nluh9Zl7hdJsZel74thnAjufAaAGOBO6K31J+Oup2V4vq7sU94tIfHbRDMHNTDyrKR4Ilyo3b6yRFFTFb0PkfBUuCA0q.b29woC5TbvVzfRDCdtDkdFO+syZ7u90GDfu.31x6DyyicAkUd7mEdUdsF5GydE9RDsKhX9vNEG9KoQdfewszKZa9K5haaeCu31K7A2E29G.uNU4YfOwU++SLaKuqnG.kF8gUiRY7mXpS5jNZ4kSOSDHReIT4N5WvRh385wJE+LUE5IIIT2yxF4u75G+BFjoMtvRrewieJO.R9JKzdyrE1W66Y+T8W+LSk3Rvb.ju2eM3Kl9JdeI3XbQNpRAl9HISErubI7qhYmntBH4twiT8H4UNmjKuCyury3Z8Nzse2+d9m++qeO+W8zKPNdxGz2ViepITqwgHckjue7kuOtE.uO3w.paj3T89evrZ2VNBn2AxVXWx7Y3yDaiWq2rRlwb.TS7TW2xj5MPz4lh3p2TDW6lh352TD23lh3l2TD25xQDaYQu8FbsAz5VqCTWrsJpt1jKSLRu8wparCFZmMR.azgbeUu530WFV9f+QII2S8JzeX5q7tgWbX5cYzXNXmcPSAhnDqZwIdRHa3y6Hu3sUqdLYGhyiHjG9P0s0Au1wo2sGXZ4KE8zdvpc.tNzFdcb7k0xs5G6y8vqhpDD0k4dkMpSrcfu1vFu.opWt4EisBFM5RbyPup5k+dpDa29L2y5HFYUK6UBCZ.Q9SV.uKMDQDoiLmCQCf7MyUEeC7g3EycGRAZfiVKmEvjYBjZD8kSGTmlZAh7P76.Gke.yEztN0m+GYdjNrjyYr.RS4Ej1tp70wWjlxAjjbk0aVG9ubBRd.P80ejlnjKfpUU+pzfTCUGvGYQq2oN72SUWtJfaTx8IV1qTXrGP5.ikMPFSZRhf8kDEfWDXIsydtS8bvwqZNkzEuNn3UT9aZV29aqVE+g7XMB4mM5vHeNIFZ2yMwwZzuZmre.hRqNKpp9uJDf..dWqTGBvI5HqAbfZ0sWFoE7OiVNSHEA9ikzIlbdevLzAzbTjzFhX9.rTCCjQeNMF8vPDPl2FuF7Rs.+YCjfA0eyJ1nBbNMJb5hStrVm.Y4oA87Ymp.u9ZX73jCp9IPgjxALyzNwVN22xZzCrW9gpoHqflOQToAe.3tWd4kg4reDQoKmC69iD2mFh+nLwGN0VIhN2eD.WpI+9jQ+Nmz.vqzGf1dpemGYQSfKSENI4ii1U1X8hb59MazbCGXnemCLXyFqtI98UmF.q8nKiOUUJVpJoUOsa.rp5ocJLsSgokxoBFEDXreAbpSJPevIhqzjAQfL8f0ap98R36mAEDn8li5n7CPhH796C4Sf0Y8X3O2wzbPxjI4Bvn5jRxUccRGPfogg9iOU8nBAcjVV1rTfyHpLtGy0pReCnbJ3rKj58yIEoJ7HNegrqOpp9tYh+Xufrq75GWmjRtkejgw+EHNR4ED
-
@Lindon yeah, that's gain for you. When it's at 50%, that's - 6db. But going from 0.20 to 0.10 is 12-13 dB difference or so.
The display is not linear.
You can compare the gain readings on the meter in the analyser window. But you already have these in the converter node.
-
@aaronventure ok not linear then... thanks. _ guess I'll just display the peak nodes then...
-
@Lindon What is strange is that, does your faust node compress or expand with these settings?
Because then the difference should be larger for compression with higher velocity, suggesting there's something wrong with the detector.
I would understand compression makes a difference of 12 to 13 (lo vel to hi vel), but not the opposite, or it would be an expander...
-
@ustk its an expander.... basically an Oxford inflator clone...
-
@Lindon Never used the Inflator, thought it was a compressor... ME
-
@Lindon peak nodes are indifferent, they don't judge, so you can just re-scale the dB output and output that visual
HiseSnippet 4259.3oc26ztbaabsfxFRVzNMostSu+bG1NSgronIfjnjhuZhr9JQSsk4XoXmNYRTWBrjbq.whB.JQ1NYl9y9.0Gf6iv8QnOB4M3dOmcwGKnnjnUcbbBmDKhcOeeN64b1EKYiRXAdLuSiC3ggrDCiJ2ocjvkEGKhLpT8jwgLiJOv73wAI82sOkGXb3dFUdnICPLJf5uyvtcYQ9BpmwNiCowwLOiJUtymiPVYw6ZH+78e1NTeZfKqXHCiWK3trmyGvSJFs81+Qtu+ATO1I7AZPu51G5JB1U3KFBR0cLaZDRcOi1icDEAaNSiufF22nxiLatVKFa8U554QWYEuVsZs4Fat5l1ztMWk1wt0lq5r55NardWiJyuuGOQDcbBMgEaT4t6H7FebewEAJF7ZdLuiOCev13XfypgOP36gpHNpwt849d4lqXv3YpY7tix38PyWv834iWXD+D4DjBLzMfUlqr3cmRhmst30TS7lhHUQSjtqRj9klG6FwCSJlAkm6adX.3T6RA+jtnnf0Xtk+HycE.DAIMFPOicPD7PNFVsZ1rNA9mkdZ0pUexSHuLLgKBH1eJ4KiYjrvEhGONzmNlzQF2DiPt06zORl+4rDRReFIVJ5jC9Jx.g2PeFgFKGurTPhgvJWVUHDKNgbNMh304X4PjsHxH+F8XI6ovQEvql1p1wYLvoFp3Zr9pzXhEOf.XSbofcAgLjQOiDH7vmnIjK.wFnARqDAoiBl8ynVpTPThA42YujlXiTxFj4Lw+RhsE5dJCuy0BuMpUEHryWdvA6+pSe99G84m7E.h1sVYiUU58I8Yf9PiR0oHQHKJgyhUJ0XwPPgCH83mqozCXfVgHezvAv5hf.leLYvPfYfZaWGLYEXh1DZf.vMJys4yB5kzmzUDo6T00uBoXKxeuJgTSoVOWhXsOsr9TGAPSRf4sq9cYZGOlbAjahHNmEEw8TZgGqKcnehNiDckyf9yFj+TpvOL0UGCoqPxEhK77FhFKAwETXw.9eSAxAGbRIqmPPr74mwHugG3Itfj.qfqSXItK0npze2.rLuhGzSoZsyQ0pfJfST5pmMPkNDfS9rj+PLg54QnjX9fPX4SHELLRCdpwFHlRw38fnSMSeaLNLKcAPi1HlV0ZaWqNYsl3+WJRrsyzA2IEb6MZlJYuArsLlGZ3.QlK73tTe+wj+5PVzXorDgBUZHBZdiXPJToNfxHnCI8QBEKvkZYdFolApaBT2AVjpho3wMp1VZfwxQQ6BLpCT2wp6v.WL6l0RU+6UqtnDPOZBsQJW2RsRrgh0sAFZIgAVd8bAHt6HFF3ECKFqS.AAVyPqtX1GxWCpa43RBZ.Zz7ajP+0iNMNgFkTmL5Tnzccx3SGvCj+gN5aznSyFMQ3k.C1X+gLhEpo7.dBGrCpgf0lghXtLWcykzPGL2JEKhEBUrRrfA9NzGz141ZPb94oAQFhfDUZSrVAiTQizDCkFI0Fw8UhgI7.VgcqGZ3VrWitPJlm46a0bjiyAxOHa6gHp59wR8m3FWzmmvvI4cgRJw6w5BDzyZRS+RnJnnagYWa95jo6HRUNky9mVxbZZE+N9kyo7bZGLmhzMmVkqlLTB8N.zn.aUiAscQgNqfo5R8iYpzNx7+v+gEtCXIWHhNqAVxCJKAbCxPF0a3.fOpZDoEsotICg3p.HoedYAEtDKP4XK0fbXfTWjMCTmvwDtrAcXdPOl0wLTIo7UqXSp54EGF.529A8.anrvcb3QJp+JFXjXASzeRcRMU6Pm1cTd2JR8BymFq0rQpbe3dkKlg0DxjGHHHXLTfl4RwLnGRF.8rC4XkM0fIO2seDWRSrUQjHv3PfCTZsGZcgR4dXAFH+qLELZi.BCJFi50P17ywBROALThnjkCQrOzDtbvABDYrjbIXjVb.uXneYvnFCpRpUS1l0VRiGZyrpAwEqWqHnIh0MhE2Wtrsv5pRaIG7kc9KLW4ZecPugLhKBpyA7Hf98vtXPtnbPnPRgZOQTUqPHf+QFKDTaBjDyqn4oce1QDo0ioi.5i5LFp30qeBw0m6dFV6imf3qYPjzEX8qkY3t.ZBF7TBrhNTXDLR4v6QAqG10Ue13pKhElUIE2REBzCSEjxZqZRpUaoFYDFMJKJYkrnZDrqf7.Dj3935Onu3Pv.hRPbBVot5hoK8TzPhlkjqYqmKanKxpZia1HyNSDAGIRXuL0fW86pRlbptcm5bXFhHguOPwoMshWWChVACgUrPRIkPmAHrYqx6fy7p2Am9FLcUIrz.TDbHTg5kgrfqZamFoY4fu8kGtGjnD21W5XEc4AisG6bXS2pMAtn4dr3yRDgfjtKDLHBPJTY9D4reT5VDkIMM3vFA+El5YNMFAZTEbu4iy9RVlyrmSfs.Ae2DpTiRXNGVLIcewJNbfufBEV5cBjQTxnO1TeHajSomCv+SmsGWbn.AamphJ8APi6CAlYBXmdYmWvCLW0YC60Vcs0bVw.p.MPehMWcyVq6r4ZZS3fy3X2ZUmVM2n0JFRKZk8Lk6fH2tenGrAgZ0j6Z3v.O1H3wkskOd.DNIt3MvJu3PHbFlPVJo52UxNbuxVZYKuRCvcMaaqruNY1W7KcDQdrnWQ83Ci0OHE03GCafPezK3dI8KrbWrceFlkn.jucaiq1sWRXblPX9Wy.429OuswkO3gOw7E39voIkOGD7zhRm.VZU5vGvCXH.ZGar9oI8N6vQlUQ7WZ1lm31e5x3bSQFgEf+PHioGozGYtOzGjaRg.dWyC9p2Cmejoh+UyV59URl+.yh1LJIDvloKcbBXVvJyApT5QJU4eZVjPMD6qNhchnM.uErSYn7zq.gG5xvW3dFFee4rvgJYaGDBK2zMteaRVO+LatrudukpM4dufBU2vkMfMPc3JYGqPlMH84lYoKOF17h7g+O3S5j13yURmzNaRsz8oc7I8Soe2nxBJmRQ2dFuFr8XTakELgcAA4ieFlfBW9ySimAukbr1B+wg8EAbWbHEDYh9yf1svbEJ4+KnwmP493BfiGFCUm7dYvw.vxi4EC.OBZY.LrG.sSJhFicxiKjv5aPTKTJ2MO5sjrVD.gVX0A7VB.jtYYvUlNPLGHyhMmIfENuxfnD.jCKXBgg7DiqTXTSOMdmg5rx14JwVkRdC1foyV0byJauiFam2D2tcYtdefqQrFxIlF+Rw4FX2cKRAdBrmGVRbZqFALWUbjT8OzC8YfZBclCkjsMxaaDmYASYudphg9rQYcrLQthIGAdVVmMeYPNQSyRl0migQIW.rqo3I77OPYLTyLcquZtax5qy0Jyk9DTGXNj0KZtqOPYPkU5Kj2jGzUVZIWdyf8iwDEZJTJFxjL55Yk4yeB99K3Ao.ZhKrMdAcT9yXaWGmvBUMFndVEb.aTHznDd6o1ZYowLlNiVvb40Jyp4MkCTvqGB3CMmK+Xu5lMssaYajtbXXz4rLd+qMscZrgDrMWYs02zYSmIjjoAgwrY.VvDDgYSrtmISVNsPtVGvTBVyUWo4F1NabI45xPX7epi49ohArYLiR.Oo2w9p8NyatbqIbNfEbFcN7fvgZFgMaroDJmUZsoyFqhMBOgQ3xPb0AMRwP2LLyNGnfplbcMArGeA1jVddoxYAjmH6OxoDueQJw22YDuxYj82omI5AlGF+ZbVWpelQGJ3qYLqZNP3MkBaOTqvVNDSyvpQfYs71GowecyXIA3WKE.nMuFE.LM9qSf2pL7SZqlG2rPd9rEkajwwaGCiYOlXdSpmmyUDNTJyeEs0Vl2TBFUPuZnmMLQL.5qM80VWdsCnjFkZcPJNkLqf6B9KdDpWwxDIJ2fgbt2S5xU0GPo1Q9IeTioY7vNevDznjloEyfiOMaoBiOvCY9XY9+SGFDCoBAzuTxtzhGEPLMUcRp7tqbx7nQ7ccu02EJUabisVufpzrqOiN4xoGn77xolpAo.Ms6Ry6mPgYno2qHVvDSxMCoEgJVoA3332nVcUknKohKTnhEmuTgZlM1eZ6h1oJf63yXWnDa8SPaJFkBxT1vTPpx0Ijwd27Z9LCRJBuarH2a1rHe+m8NwhXXbUVDsTKkaQxzzie9TsN33SKbAG+mSgKe+moaO9jxIAsuk4RuDYtojo299oU2GQ8zfuk8zs9UUd95yl5b6xl57SprooFn25tLW48jlMMko7Z8qxKtfxc7V5Dyw5Cce3+wai7GvcntiPb1.p7vvuUuFT8WzxuUM48MeC8bl7JfJsZ+F4ycEQCHeNC1lKdTd1WyEe9+cVu3ygy7Ee9ktIfHbRDMHNTDyrKk7lMfehHfEWZzIvvYpX3TtbWxvfxjVMTInPSwAfoPCt6sc1fN5C1lFThXvyknzK3EuiWi+8mse.9ZjOVdyZdYrKXXnSTOp8P+X1avWAosNhEC6nO7WPi7.enaoWO2cttq+s8s75eO+GbW+6eB7RXk80jIiKlIiGKuwo6Ca31GV4JkwekYZBprQKuz6Eh.Q1qtpvQ+JVRDuWOV49YllB8rjDp6Y4i7ONe6WwfrxwZKG+8a+bd.jnVt+8amsv9s915OU+0+koRbIX9BxO5u77ExdwvuFbLtHGUoKydjjqB12rD9kwrSTWjjB23gpSdwqbNIWdGleYmwa0ad29G9aGvc9Y8sCX1Su.43IePeGO9slPsFGhzUR9wwW993tC79fGCntQhSSOUULq18ji.5cfrc2EMeA9Lw137I2m5.nl3ottkI0kPz41h3J2VDW81h3Z2VDacaQb8aKhabyHhsrjtQHbsAz5V68UWOtJpt1jKSLxtCyp64CFZmOR.azAbeUe83kfFV9f+QIIOT8Z2eR1qIugWbX1MhzXNXOfPSAhnDqZwIdRHa3y6Hu9tUqdDYKhySIjm7D0c7Au7xY2HHXZ4K27zdvpc.tNzFdcb7k0xs5G6y8vKzpDD0UBe4V0I1NvWaXiWCU0qf75wVASJ5RbyQup5E6dpDa29L2y5HFYUK+08BZ.Q9Ce.uANDQDoiLmCIE.4aJqJ9V6Cwq26VDMZfiVqfEvj4BjZjzq3NnNMSEHxSvuCbT9ALWP65Te9ei4Q5vRtfwBHMkWyZ6pxWWuNMkCHI4xq0rN7eEDj7Xf5q8zThRtFpVU8aaCRMTc.ejEsdm5veOUckr.tQIOhXYur1XOlzAFKefblzjDA6KIJ.uNwRZm+bm5EfiWXcJoKdoRwK57W2rt82TsJ9yAxZDxOazgQ9TRLztmahi0n+6sx+YLJs5rnpo+Ug.D.v6Zk4P.NQGYMfCTqt8RHsf+YzR4BoHverjNwjK5ClgNflihTpgHlO.K0v.YzmSiQOLDAj6swKSuTKve7AIXP8WurMp.WPiBmt3THq0IPVdZPOe1oJvquJFON4fpeHUHob.yLsSrkyirrF8X6kdhZJxxn4SDUZvGCt6kVZIXN6mRT5xEvt+Hw8og3OsS7gSsUhnyiFAvkYxeDYz25jE.NSe.Z6o90hjGMAtLU3jjONotxFqoyoG0rQyVNvPeqCLXyFqrN98UlF.q9zahOUUJVlJkpdotAvplNsi1zNZSKkSELJHvXeMbpSznO3DwUZxfHPld7ZMU+pK78ygBBzt7nNJ+.jHB+U..4Sf0Y8X3OZxrbPxjIEBvn5jRxU8zjNf.SCC8Gep5QEBoQZ4Yyx.Nmnx3dLWqJ8MfxofyVK06mRzoJ7HNuV10mVM8Fch+jwfrq75GUmjQtkdpgw+OLIwz0K