How create a filterbank with Faust
-
Hi
I tested the Filterbank demo from Faust program.
I would like to code a filterbank myself with differents Frequencies, Gain, Bypass for each frequency etc...I do not really how I can code that :
Example from faust :
Usage _ : filterbank (O,freqs) : par(i,N,_) // Butterworth band-splits Where: O: band-split filter order (odd integer required for filterbank[i], a constant numerical expression) freqs: (fc1,fc2,...,fcNs) [in numerically ascending order], where Ns=N-1 is the number of octave band-splits (total number of bands N=Ns+1). If frequencies are listed explicitly as arguments, enclose them in parens:* _ : filterbank(3,(fc1,fc2)) : _,_,_
Is there a simple way ?
thanks
Math
-
@Sounddiy Sorry, this doesn't exactly answer your question, but have you checked out the clone container in scriptnode? it's ideal for this kind of thing..
https://docs.hise.audio/scriptnode/list/container/clone.html
-
@modularsamples thanks
I did not know clone container.
But there is no example, I am little confuse to make it work. -
@Sounddiy The clone container is really powerful, but it can be a bit tricky to work with at first.
Take a look at this example. 3 filters are cloned 16 times with clone_packs controlling cutoff, resonance, gain and an xfader to sweeps between the filters.
HiseSnippet 4568.3oc6c1zbaijdGGTRPVxd7Ld1wIUNpC6AOkmnBuQBfjTkoEkjGMqjHWQMddIG7BABJgHP.NjPuPmJUki4VNu2xGgbM27GgopbNUkO.4v9MXS2.fD.zDxjh.M4V5OcUtDZ.z8S28S+GO8OxFciddlV8660iqzlmNnqEWoOiu4.W+KpcggsK2A6xU5y4OxnuuUusBSZmAcM522pEWoRq9FZBk1bMtfO+oWsigigqoUbRbbu0y1z5P6N19wo1n5uy1wYeiVVmZ2IwUqT8.SO2ZdNdWQrmU4E35ZXdow4VGaPurU34Js9dsr8850z2v2pOWo01wq0flW3cia30+V691m4XQOPjqIIiBSdeOmVTKllJWsKrcZ0XX8tOGWI9FwsBqF1J7b9iraYOJ83VimEbhshuijsGkVIs4sZJySLo4Ijv7lfIUJgIsVnI8k7MM6Y20O9LT64I7G3R5bZaPZ1SZJgWKWoOvWyibAt9a2w3Rq86QNXzM7hJBBeyVj+6q+6aekqousm6VdtG64aU28Ee8i+me7lO9e4waM9oZ2dhmiVL87bbr5MwSS6o6cW23KbupyYV89lst1v4JqQWHo5mtMkO61zjc4lg05DWnm6At1906Z4lki.WTSEo8esHqh7W9As9+lnV+lN1sr50f3WxYSZneJebBhbAlNwDK8EjLqkguAWo+Q9JJa+s64e7KUcuVPcva1y+1509g5e2KIGZqZ67SN2T+mc9o8e46s24GTs+k2r2s08ac52l77GM3vZubaxG0Z642pW8SN+W5nucn8NiFoTlFo20B0BKzAB16Lnd8u6ridY6SkKqViTdCp+OsyOT+kM9tyzhNN37GN3vApCH2zsTi5MgUhljK555j67l6oQJGajal1HIEWOcZgVdPqSk6RaI6pSZdaUtob4euWchMbo9tj1ujG2f7+UBa4BLp2SxfJMoYUcRyqx8zHUhMxOOsQVLe3399C1kVHjg2QNpDm2tV87soiKJsq00Do1PshM420p+k9dc4JsQMuNc8bot0k1XF7kuMVW9en5fQGT8zp2X2x+h3D7pdgk84WDqu+gyp1c3npCZE7Dkfhaq8+QQtVVsMtxw+sQMc7BaWl15OxD2bF7jiMw+U+bzDiKhCbaYcanZQ9Y2xY0zt0uj61sTNZ2JY0dW.1s7X1c3SIisZ9Pq9oQYygFmY4DXvavG72Ice+v2mvV4bq5acKcn.esu+z56u+LksIc49C2Nor8I7mrWy5G+5iqs2LkyobJdahb9+88Q4757u40Gb7LkoI6w90aRjo+5vL8o76evgmt2Iac5O0fXvebPGjvc7Zckige5XfnA9EcBxCwSE3AM5B2919CRFX33AFs1zEXzcG21zZteIeCaeyKlr8txDrWhBaQauQgY9T98Z21xzO1XWie+ejAwTxGV9ONx0gTlzBO0vxjFwwW0IdTJMHrRzlpgwX9uwGGOW2dVcM5YcpWCGiAunuQmtNVmPr7uYqyb7Luro86s93f.izF1gdEuv7BCWWKm92mXEWepaqDuy1JtS7tx2187iL76YSFDwSa.HyJwzpVj0QaCVgFxX3wBziodNMsbaEbvel7I5jhziKEcRwgmLNZStis7uwq2kAcRQ+MotP6QdDuoCYzN2as50m54RRPXax+3dsii2MTs.6HeZRuTPZM7bFz8BOWaSZRgWwPq90c7tJP3Hvz+Vi9mZX6PGDTZki8ZQe9v9Flj1uAMLnx4eIOMJZhmoUusMG4gNzjh8Onsgz6e3L2BaIHEcm.YJ571VkddZ8a0nBJLm520gLwvLKzvSe+Jn0RTPavadkuW61oKomGTRD2osCpPuiNYyYqvVKVS4Tidma4GTCI8qtVlgcJAsqzm3wy2+51bML5QlJKY5WzjdB+98r9kqrbMGDD.5GeSOhdShZ2uaS+NuM53xaGFNYxw1oNjipOF7L4vZ+djgcsHRb6lJX21u7vyzb0ZRByVHLBaxDB1IJhaqSk+4f4tnWi7ex0Ct9fioQf+95AS6XWxDhJm77bwFO0jVYzQDK4Ha2QgyHRFJbjwsQGuNuXERBM8s5REZFdAgySlLDtFsetOW5qlKQduVx7VHUdGmUOhOLonSr4Za++7aWuz69+dEWh3w43R3+8D9dV88bCXirT4BtJ+ueVb89TWt9Du7Y2Uqzc3pMQWo443+BxUK7DY5lsN+4TQZV3gUJCu.pAHk1KX8fnEueNBqLYGg5e2Yl5W25TY4A167CVTTDlZ4vDrKdGg3PhmeYm3bJS+gfIHr37G1f+11Fjt0zNDCqH2KOhUmUoApGhDkSzO+RJmHMJWnaB4BsT3QTfRCIM9I4j7nnXin1iX1QgMov8nAUGUOFcbhhKH.6OUjZIsnfImPOZ.syNXpHGz+szyZZ3vkjBvv36dVh5vmGUGdmIMPdtOQPrY6s+Y7JRZp5RpJJJoL1gSrqzpiWQISPahw1Nx0Okw7rQi9hN6rEaapVrUFqE6Kn9VILsQMZxi57GdoqSmlbBWmSNpIYxI2PmkbhfHRlP5g320Hd5S.DqL4GALG4nVtmi5SNGSMhuz8cT4qIy2nCYRnCgAjxyHXZMhEyzdRO+pPG9683g6pfVIQAEFYYph4o7sscnshaSO0rUDi8bg8Cyn3+L94Aqw+2JN1iCH4P59v0SzGtdbe357Ro6D2jj.4CU49RqaBqLzmWJrsjjttfR4JRRxJZpZkijximOUTNrAuXXFjn2mDByjK+uhjwxBAeDE0kDzkzSXLeEu91Z5zOUD0JKKHoJ+wlUEEUQUMQUYgJkE0pDXVzXtS4Ulosjve9QjlQsweFlVjKcz.iTt9bY8jvIMtXb6VVPTfVy000TzUEDiZNa1wyy+Ba2yGVT+0zbSPO7ipZEEMoxZRSeYqjwCgGW8a1qPSHS2jeOWiybHMySWr5iDJSMp4IjAm8r197YdX4Job4WcxtbaP5lEFuBIjpBQ6eDEhbKUzItlUDS0A9U7k2VQRRRUPUUQSQTVPOoWxz34Odi5ngMyfYLK9QQiz4XeixmwehUeK+wBTSX5CTapBKhzPml00EASBqvU8GhH3u.z84KFc+weJ+jKwBTo+NL.HumRFdwHuqA4cHuWDx6xrRdWGx6PdeYVdWZAJuqC4cHuO+x6eJNsQxwm+wg0OYOtP876zeKK6Oky2ihamG9sM7SeHgx5netLwM1Ao8e7G+i+WuJYKbPpe37+y+pperjTbtLMdewW8GYGU+2qNU1we3q18+9UY3rE+KQ+ST94Q6vj7uhyq7JpgGE9K1JIfbwxKEHxebDhbYgGXPx2L7oGRR4GS6gYob9mkJKHN4aFxIWlAfx2LLnZcAVEUcY.KGvxAr7oMb6XASDuMh2NOwoLT4WjQJ+5xfmB3o.b4YHvKCAdHvWHB7r56CUWAB7PfG.yyPfWAB7PfmQDyG5yUFLyAy74lYtxREybI8GlLyyyeG3CyR87mYtvBlYt.yXlqoxJl4JfYNXlCl4yXD23mfHh3tXPpnowJjJh.oBPp.l4YHvieDhPfuXD30Yk.uDD3g.OXlmA+RAHvCAdFyLWDLyAy74lYt7xEybsGnLyKm+Lyqj+Yo5hkYtjN6XlqvJl4xfYNXlCl4yJRkxHhaDwcgfToLiT90v51GHU.y7rD3wqcKHvWLB7UXEybAHvCAdvLOCAdUHvCAdFwLO5kAD9YlCj4yOxbokKj4pOPQlm+uZVDy+WMKhK3WMKRZrCYNqVf9hR.YNPlCj4yZ.23UyBB3tXHpvpUt+3qjIPTADU.x7DguBAdHvWDB7r5cYtF1pJf.OPlmk.Od0r.AdFiLWAHyAx74FYt3xEx7JOLQlKj+uFUDEx+rTbAiLWkYHyUY05yWTDHyAxbfLeFC3V.KbeDvcgPTQkUKbesxfnBHp.j4YPTAKbeHvWLHyY0FUz3+b1g.OD3Ax7DvDf.OD3YJxbYfLGHymaj4BKWHyK+.EYd9+VTQPM+yRsELx7JrCYNqVd9hB.YNPlCj4yJxbrt8Q.2ECxbVst80vF.JHp.j4YIvi0sOD3KFAdVsOEogM.THvCj4YIvisiHHvyXj4R.YNPlO6Hy+hTHy0WtHlq7.kXd9+RTQPI+yxxKXh4kYGwbFr57WO38cH.lCf4.X9rFtMV09Hb6hgmByV09X2+D7T.v7rD3wp1GB7Ei.Oq1jhzvt+ID3Av7rD3wdQDD3YLvbr4eBf4yMvbskKf4xOPAlm+uBUDDy+rTZACLWgY.yqnyHf4Z.XN.lCf4yZ31XM6ivsKFdJrZM6qhs9SvSA.yyRfGqYeHvWLB7rZKJRCa8mPfG.yyRfG6DQPfmw.yE.vb.LedAlqtbALW5AFv7vgx5436OknbTK2yQ8ELsbY1QKuBinkqBZ4fVNnkOswZORrDgZiPsK.VJUX0p0WEa5mfkBfkmg9NVr9PeuXz2Y0dSjJ1yOg9NXkmg9N1Ahf9NqPk+nPWNPJGjxmWR4UVtHkK9vjTtRty0tbtmiUVvjxkXGobYFQJuBHkCR4fT9LFoMVl9HR6hgjBqVl9pXu9DjT.o7Lz2wpzG56Ei9Nq1RhTwV8Iz2Ao7Lz2wFODz2YKobMPJGjxmWR4kWtHkK7vjTtXty0VJ2yQ4ELobQ1QJWfQjxKCR4fTNHkOiQZi0mOhztXHovp0muJ1hOAIEPJOC8cr77g9dwnuKwJ8crCeB8cPJOC8criCA8c1RJWEjxAo74kTtxREobQ8Gjjx0x82UJZ54NobgELobAlQJurJiHkq.R4fTNHkOaQZqgUmOhztPHoTlYqNer2dBRJfTdF56X04C88hQeWmU56Xq8D56fTdFjxwVMDz2YKo7JfTNHkOujxkWtHkq8vjTdt+tRQqRtmipKVR4h5riTtBiHkKCR4fTNHkOijTvpyGQZWLjTX0pyuB1TOAIEPJOC8cr57g9dwnuWgUjxwd5Iz2Ao7Lz2w9LDz2YKo7xfTNHkOujxkVtHkq9vjTdt+tRQSN2yQkELobM1QJWjQjxk.obPJGjxmwHswpyGQZWLjTX0pyuB1QOAIEPJOC8cr57g9dwnuKyJ8cridB8cPJOC8crOCA8c1RJWAjxAo74kTt3xEo7JOHIkKpl6bsEx8bTbASJWs3IkuQXD0rBTtH.kCP4.T9rEnsH9Iof.sKDPJJrZw4WAanm.jB.kmAHEr37g9dw.JWfU56XC8D56.TdF56XaFB56rETtL.kCP42C2pDRLiIQJldvSomkpdDKQ9DJi4ZTb68G2XEpN0BvRYH.+T9lTvmMsO2MtNLpwn5GOPPjkCDVmUCD9veW61e8Gfu+b66uim2kcL5cI89+9CFFxYMRPxj99DYXoR6Zcsso0oC5FDq3tV8uz2qaPgZZ0uevyGBO4S4e8Usr8NzidyANsOOLksnIsUCGiAV8DS48Ez8Npd8quZGCGCWyTU025QJ8Cs6X6GmZ2p+NaGm8MZYcpcmT8LGPByen6LMthlCbMCBGZz07mdUifuVjdFlWR6bSTTTybXXNIt9SH9AG64mHOZTsoAMT8l9F87IYexL4DqqI8JVoRiD9t0wFTKkLlpCsJGNTqiwsC+SGRYGjcISXO2VCOrzp60xl3mPtFeZ2xZ630Z.8qbyMLz22Z22lX3gGzjzBDV+G90yEDcbM5WB3n9MpyxZI5EWMrW74D4oV1iRuVvjknclOK3DaEeGI6HKsxTadBSs4kzGasPq6YzfauxwvOskQ8ihNA86yJokc.0ituMc7PbW53l6pSm4NgVvRIrwMGZiMsodG64dskCYrPfM9aHibZabki+vTSOP3HOWutW34Zal1Wxum84ma0KosOwJzq88I9ywo77pmX4XYzOgS6us5gjo+Zza7gCyPag3z2VbW8W+M7gl6VzQuaMO8aL0M6K4CTNld6kFUQAauqNT5cu1ssL8iM1032+GYvHzS7txmnhdjAwQkpkQBApIQ70zhXIttVN8o5WqPipH7Xgg5YMsbaEbvel7I5jhziKEcRwgmjIkQGCydduK5Gf.0WdifTH0a2.c6M4Ohd7VhbWmLxsNDEw2YZFAjgax2iz83djuG2ix83dJeOtmJ2i6Q8dbOZ248PeXTzDhnCEIIzXuPRXkF8L7Rqx8+C.eDF4E