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Figure 74 pfaust-data object example. 

3.3.5 Faust FFT 

Using the Web Audio API, web developers can easily get the real-time spectral data from an 
AnalyserNode that does Fast Fourier Transform (FFT) analysis on demand and returns magnitude 
per frequency bin via getByteFrequencyData or getFloatFrequencyData. However, we cannot use 
this method for serious spectral analysis and processing due to several reasons.  

First, an FFT analysis usually outputs for each frequency bin a complex number value which 
infers both magnitude and phase information. But the AnalyserNode drops the phase information so 
that the returned frequency domain data is incomplete. 

Second, the window function using by the FFT analysis is not controllable, it is hard-coded to 
a Blackman window.102 

Third, for scenarios where users need to analyze successive windows such as with the Short-
Time Fourier Transform (STFT), there is no way to precisely control the timing of each analysis as 
the function call time on the main thread is not reliable. In addition, no window overlap mechanism 
is implemented in AnalyserNode. 

Fourth, the node does not provide any inverse FFT (IFFT) method. Without phase information, 
users are not able to reconstruct or modify input signal with given data and API. 

In the Faust IDE, we used raw AudioWorklet output data and with a WebAssembly version of 
KissFFT103 for STFT analysis and data visualization. The system is partially usable for spectral 
processing. For improving performance (and avoiding array copy between threads), we put the FFT 
module inside an AudioWorklet, implemented an IFFT API, and designed a flexible spectral 
processing framework around the FFT/IFFT API. 

 
102 https://webaudio.github.io/web-audio-api/#blackman-window  
103 https://github.com/j-funk/kissfft-js/ 
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3.3.5.1 Case of the Spectral Processing System in Max 

Currently, few frameworks can be found for musicians to design spectral processing algorithms. 
Traditional tools for audio developers such as Matlab, Python and JUCE are not usable for the web 
environment. Max has a graph-based system that is dedicated to audio spectral processing: pfft~. 
It is widely used for musical project and has an interesting and viable design for a web-based 
environment to implement. 

 

Figure 75 Max’s pfft~ framework. 

As Figure 75 shows, the pfft~ Max object allows users to create and load special subpatchers 
that manipulate frequency domain signal data. It performs STFT on the incoming time domain 
signal with specific FFT size, overlap factor and window functions. Hanning, Hamming, Blackman, 
triangle, and square window functions are available. For each FFT window, it sends the spectrum 
(frequency domain data) to the subpatcher’s input and takes its output as the modified spectrum for 
an IFFT to reconstruct the time domain signal. 

In order to give more precise data on the spectral change over time, the object supports 
overlapping the FFT frames. For example, with an FFT size of 1024 and 2 overlaps, the object will 
perform once an FFT of 1024 samples each 512 samples. The object performs by default a real FFT 
which is faster and returns half of the frequency spectrum. In this example, users get 512 complex 
numbers per FFT. Since the FFT calculation parameters are defined by the user, this pfft~ object 
will adapt all the audio object in its loaded subpatcher to a specific rate which is different from the 
audio sampling rate.  

The subpatcher loaded by the pfft~ object need to be specially designed for spectral 
processing. In this patcher, users can get the spectrum of the input signal using the fftin~ object 
and send the processed spectrum using the fftout~ object. 

The fftin~ object has three outlets that can be connected with other audio objects, they give 
spectral information of a given audio channel. The leftmost 2 outlets put out a stream of real and 
imaginary numbers for the bin response for each sample of the FFT analysis, the third outlet puts 
out the current FFT bin index. These numbers are ordered by their FFT bin for each frame. With 
this mechanism, the fftin~ and fftout~  the users can easily identify which bin the complex 
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number (real/imaginary pair) belongs to. Additional information about current running FFT analysis 
such as the overlap factor and the FFT size can be acquired in the subpatcher using the fftinfo~ 
object. 

Max provides several spectral processing examples with pfft~. Implementations of pfft~ 
subpatchers for getting and manipulating amplitude and phase data of each bin, creating FFT-based 
filter, synthesis, delay, reverb and simple time-stretching are shown in the documentation. These 
examples are implemented with regular Max Signal Processing (MSP) objects which gives us hints 
about designing Web-based spectral processing system: It is possible to use time-domain-oriented 
DSPs in a frequency domain context for spectral processing if the DSP algorithm is carefully and 
correctly designed. 

3.3.5.2 Spectral Processing Architecture on the Web 

Our aim is to implement a system that allows doing FFT/IFFT and insert a DSP component 
between the two transforms inside an AudioWorklet. In this work, we are facing two major 
challenges: One is to minimize the latency between the input and the output with a correct buffering 
mechanism; Another is to maximize performance by avoiding buffer copying. 

The buffering issue need to be addressed at the AudioWorklet processor’s level, where the 
process method is called each audio rendering block, with 128-sample-long input and output buffers 
provided. Since the FFT size can be bigger than the audio buffer size of 128, we need a larger buffer 
for storing the input audio signal before these samples can be FFTed. Similarly, another larger buffer 
is needed for storing the IFFTed audio and for adding overlapped windows before the audio output. 
We implemented these two buffers as ring buffers (Adenot, 2022) to avoid data moving, read/write 
pointers are stored for each buffer. 

Based on a WebAssembly version of both FFTW and KissFFT libraries104 developed by j-
funk, we rewrote a JavaScript API that can be more easily used in an AudioWorklet environment. 
These two libraries are likely the fastest web-based FFT/IFFT implementations according to his 
benchmark.105 In our version, the FFT forward/reverse (IFFT) methods support passing a callback 
as the parameter instead of the input buffer. The callback’s parameter is the internal input buffer of 
the FFT module that allows users to fill in with the callback function body (e.g., fill with the data 
from the input ring buffer in our case). This approach can avoid one extra buffer copy. 

The provided AudioWorklet also supports other FFT libraries as long as the given FFT library 
conforms the interface definition which includes the constructor, the forward/reverse methods that 
accept a callback or a Float32Array as parameter, and the dispose method for memory clean up. We 
also designed hooks that are used for interpreting the FFTed array. For example, for a real FFT of 
size 𝑛, FFTW stores the result – real and imaginary parts – as: 

൜𝑟଴, 𝑟ଵ, 𝑟ଶ, … , 𝑟௡
ଶ

, 𝑖௡ାଵ
ଶ ିଵ

, … , 𝑖ଶ, 𝑖ଵൠ 

The FFTed array has the same length as its input if 𝑛 is power of 2. The array contains all the 

 
104 https://github.com/j-funk/fftw-js and https://github.com/j-funk/kissfft-js  
105 https://github.com/j-funk/js-dsp-test/  
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necessary information about its input since 𝑖଴ ൌ 𝑖೙
మ
ൌ 0.106 However, KissFFT outputs differently, 

which is: 

൜𝑟଴, 𝑖଴, 𝑟ଵ, 𝑖ଵ, 𝑟ଶ, 𝑖ଶ, … , 𝑟௡
ଶ

, 𝑖௡
ଶ
ൠ 

The array has a length of 𝑛 ൅ 2. So, the hook allows users to customize the interpretation 
according to different FFT implementation, and transform the FFTed array as following three arrays 
for spectral processing, then transform back after the processing for the IFFT: 

൜𝑟଴, 𝑟ଵ, 𝑟ଶ, … , 𝑟௡
ଶ
ൠ , ൜𝑖଴, 𝑖ଵ, 𝑖ଶ, … , 𝑖௡

ଶ
ൠ , ቄ0,1,2, … ,

𝑛
2
ቅ 

We also noticed that Max’s pfft~ drops a pair of the last complex number ቄ𝑟೙
మ
, 𝑖೙

మ
ቅ  which 

represents spectral information at the Nyquist frequency. This is probably for keeping the buffer 
length power of 2 but can produce inaccurate IFFT result. 

After the FFT analysis of each buffer, we use a Faust DSP as the spectral processor to modify 
or generate the spectrum for the IFFT synthesis. The three arrays that represent the current spectrum 
will be passed to the Faust DSP as signal of three input channels. 

For the implementation, we added in faustwasm library the proposed AudioWorklet. The 
processor presumes that the developer prepared a FFTUtils JavaScript class/object that has 
following static fields (Table 16): 

Table 16 Static fields of a prepared FFTUtils class. 

Field Description 
windowFunctions  Optional, an array of functions (possibly a static getter) that generates 

different window functions for FFT windowing. Each window function 
should have two parameters: current index and the window’s total 
length. The function outputs the corresponding factor of the current 
index and will be repeatedly called to generate a whole window. 

getFFT  An async function (or static method) that returns a class constructor that 
creates an InterfaceFFT class containing FFT/IFFT methods. 

fftToSignal  A function (or static method) that converts (splits) from FFTed 
(spectral) signal to three arrays for Faust processor’s input. It accepts 
in order 4 arrays: FFTed signal, real, imaginary, and index. It fills the 
arrays in place. 

signalToFFT  A function (or static method) that converts (merges) from Faust 
processor’s output to spectral data for IFFT. It accepts in order 3 arrays: 
real, imaginary, and signal for IFFT. It fills the arrays in place. 

signalToNoFFT  A function (or static method) that converts (merges) from Faust 
processor’s output to direct audio output. Its definition is the same as 
signalToFFT. 

The getFFT function returns an InterfaceFFT class constructor. The InterfaceFFT includes 

 
106 https://www.fftw.org/fftw3_doc/The-Halfcomplex_002dformat-DFT.html  
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necessary methods for FFT/IFFT methods (Table 17): 

Table 17 InterfaceFFT interface's methods. 

Method Description 
constructor  The class constructor accepts one parameter indicating the FFT size. It 

will initialize the memory space for FFT/IFFT. 
forward  The method performs a FFT on a given array. It accepts either a new 

Float32Array or a function that fills an internal Float32Array. The latter 
can be faster because it avoids an extra array copy. It returns the FFTed 
array. 

inverse  The method performs a IFFT on a given array. It accepts either a new 
Float32Array or a function that fills an internal Float32Array. The latter 
can be faster because it avoids an extra array copy. It returns the IFFTed 
array. 

dispose  The method frees the allocated memory space and disposes the class 
instance. 

When the AudioWorklet processor received a whole frame of audio signal, it will do the 
following operations: 

1) Apply the window function, 
2) Use the InterfaceFFT.forward to perform an FFT, 
3) Use the FFTUtils.fftToSignal to convert the FFTed signal array to Faust processor’s 

inputs, 
4) Call the Faust DSP, 
5) Use the FFTUtils.signalToFFT or FFTUtils.signalToNoFFT to convert the Faust 

processor’s outputs to the FFTed signal array. 
6) Use the InterfaceFFT.inverse to perform an IFFT (skip this step if the noIFFT option 

is enabled), 
7) Remove the windowing. 

The Faust DSP is the core of this process. It is a FaustOfflineProcessor generated by the 

faustwasm module with a buffer size of ௡
ଶ
൅ 1. By its initialization, we will detect following special 

DSP parameters and set them to a constant value, in order to pass the information about the current 
FFT setup: 

- fftSize: current FFT size. 
- fftHopSize: current FFT hop size per frame, correlated with the FFT overlap factor. 

For each audio output channel, we assume that the Faust DSP will output 2 channels containing 
real and imaginary values of the current frame. For example, a 2-in 2-out bypass Faust spectral 
processor can be written as (Figure 76): 

- verbose version: 

process(real_1, imag_1, bin_1, real_2, imag_2, bin_2) 
= real_1, imag_1, real_2, imag_2; 

- simplified version where we omitted the last (bin_2) input as it is not used in the processor: 
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process = _, _, !, _, _; 

 

Figure 76 2-in 2-out bypass Faust spectral processor (left: verbose version, right: simplified version). 

Figure 77 shows the architecture of the Faust spectral processor inside an AudioWorklet 
processor. 

 

Figure 77 Web-based real-time spectral processing using Faust. 

We use AudioWorklet parameters to control the FFT type: fftSize, fftOverlap, 
windowFunction, and noIFFT. The fftSize and the fftOverlap parameters will instantiate the 
FFT analyzer or configure it upon any parameter value change. The windowFunction parameter 
receives a number as the index of a pre-defined window functions list. The noIFFT parameter will 
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toggle a special synthesis mode after the spectral processing. This mode is also present in Max by 
putting the keyword nofft as a parameter of the fftout~ object, which bypasses IFFT and outputs 
raw spectral data. This mode can be used for audio analysis scenarios. 

As a new usage of the Faust language, we added an option in a new version of the Faust IDE107 
to enable this FFT processing mode and to specify FFT parameters. Users can test, visualize and 
debug the FFT processor written in Faust in real time with the environment (Figure 78).  

 

Figure 78 Window Functions of FFT processing in Faust IDE. 

We added two new objects faust‐fft and pfaust‐fft in JSPatcher for users to design 
spectral processors using Faust code or patcher and run it in real time with other data and objects. 
This object shares the same interface with pfaust object which contains a subpatcher that is 
interpreted as a Faust DSP. In pfaust‐fft’s case, the DSP is a spectral processor instead. Some 
examples are demonstrated in 3.3.5.3. 

3.3.5.3 Examples 

For the proof of the concept, we built in JSPatcher some simple spectral processing examples 
using the new pfaust‐fft mechanism. 

To start with, a simple gain controller in a spectral processor will multiply both real and 
imaginary part by the gain factor (Figure 79): 

gain = hslider("gain", 1, 0, 1, 0.01); 
process = *(gain), *(gain); 

 
107 Available on https://faustide.shren.site/  
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Figure 79 Simple spectral gain in Faust. 

Using the third channel, we will be able to identify the current bin index and its center 
frequency and create FFT filters by changing the gain factor according to the bin index. For example, 
a basic high-shelf filter can be written as (Figure 80): 

gain = hslider("gain", 1, 0, 1, 0.01); 
cut_bin = hslider("cut_bin", 1024, 0, 1024, 1); 
process(real, imag, bin) = real * gain_bin, imag * gain_bin with { 
    low = bin < cut_bin; // Check if the bin is lower than the cut_bin 
    // If lower, use the parameter value, else 1 
    gain_bin = (low == 0) * gain + low; 
}; 

 

 

Figure 80 Simple FFT filter in Faust. 

We can use the fftSize DSP parameter to get the actual FFT type information and make the 
cutoff parameter Hertz-based (Figure 81): 

import("stdfaust.lib"); 
gain = hslider("gain", 1, 0, 1, 0.01); 
// cut_bin = hslider("cut_bin", 1024, 0, 1024, 1); 
// High‐shelf cutoff frequency in Hz 
cut = hslider("cut", 440, 0, 24000, 0.1); 
// global variable set by the processor itself 
fftSize = hslider("fftSize", 1024, 2, 16384, 1); 
cut_bin = cut / (ma.SR / fftSize); // FFT bin index of the cutoff frequency 
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// ... 

 

Figure 81 Spectral high-shelf filter running in JSPatcher. 

For more sophisticated spectral processor, we will need to use both amplitude and phase 
information about the current FFT bin. The conversion between the complex numbers and the 
amplitude/phase information can be done with a cartesian-polar coordinates converter (Figure 82): 

cartopol(x, y) = x * x + y * y : sqrt, atan2(y, x); // cartesian to polar 
poltocar(r, theta) = r * cos(theta), r * sin(theta); // polar to cartesian 

 

Figure 82 Cartesian-polar coordinates converter in Faust. 

With the converter, cross synthesis and convolution effects can be easily implemented. Figure 
83 shows how a spectral convolution looks like in a spectral Faust patcher, where cartesian-polar 
coordinates converters are implemented in subpatchers. 
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Figure 83 Spectral convolution in Faust patcher. 

With noIFFT option enabled, the DSP can output analysis result as audio signal. The design of 
the DSP is a little bit trickier as the result need to be locked with each FFT frame. In most of the 
cases, a sample-and-hold function can be used to maintain the output value while calculating the 
next result. The code below shows an example of a spectral centroid (Grey & Gordon, 1978) 
analyzer in Faust code, Figure 84 shows its runtime in JSPatcher. 

import("stdfaust.lib"); 
fftSize = hslider("fftSize", 1024, 2, 16384, 1); // global variable 
bufferSize = fftSize / 2 + 1; // Bins from 0Hz to Nyquist frequency 
freqPerBin = ma.SR / fftSize; 
fftprocess(r, i, bin) = out, out with { 
    mag = r * r + i * i : sqrt; 
    divident = mag : *(bin) : + ~ *(bin > 0); // reset for each frame 
    divisor = mag : + ~ *(bin > 0); // sum of the magnitude of this frame 
    out = divident / divisor * freqPerBin : ba.sAndH(bin == bufferSize ‐ 1); 
}; 
process = fftprocess; 
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Figure 84 Spectral centroid analyzer written in Faust and running in JSPatcher. 

Using Faust’s recursive operation to create a loop, we can make a spectral denoiser that “freezes” 
a reference spectral frame and process the future input frames, reducing the magnitude of each bin 
by the frozen frame. It memorizes a background noise print when the user clicks the button and 
removes it from the input audio. Figure 85 shows how the denoiser, compiled in WAM2 format and 
loaded from a local URI, reduces noise from the microphone input using two spectroscopes. 

import("stdfaust.lib"); 
// global variable 
fftSize = hslider("fftSize", 1024, 2, 16384, 1); 
// Bins from 0Hz to Nyquist freq 
bufferSize = fftSize / 2 + 1; 
// cartesian to polar 
cartopol(x, y) = x * x + y * y : sqrt, atan2(y, x); 
// polar to cartesian 
poltocar(r, theta) = r * cos(theta), r * sin(theta); 
 
// Button to freeze the current frame 
freezeBtn = checkbox("Capture"); 
// Denoise amount 
reduceSld = hslider("Reduce", 0, 0, 2, 0.01); 
 
freeze(rIn, iIn, bin) = out with { 
    // If the Capture button is on, put the current frame bins in a loop 
    freezeSignal(sig, frz) = orig + freezed with { 
        orig = sig * (1 ‐ frz); 
        freezed = orig : @(bufferSize) : + ~ (*(frz) : @(bufferSize ‐ 1)) * 
frz; 
    }; 
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    out = freezeSignal(rIn, freezeBtn), freezeSignal(iIn, freezeBtn); 
}; 
 
fftproc(rIn, iIn, bin) = out with { 
    // Get the current bin and the frozen bin's magnitude and phase 
    pol = cartopol(rIn, iIn); 
    mag = pol : _, !; 
    phase = pol : !, _; 
    pol_frozen = freeze(rIn, iIn, bin) : cartopol; 
    mag_frozen = pol_frozen : _, !; 
    phase_frozen = pol_frozen : !, _; 
 
    // Reduce the magnitude and keep the phase 
    out = poltocar(mag * (1 ‐ freezeBtn) + (mag ‐ mag_frozen * reduceSld) * 
freezeBtn : max(0), phase); 
}; 
 
process = fftproc; 

 
Figure 85 Spectral denoiser in WAM written in Faust and running in JSPatcher. 

3.3.5.4 Discussion 

The approach that we adopted for spectral processing in the AudioWorklet context is not the 
only viable one. In fact, using pure JavaScript code for spectral manipulation can be more 



Chapter 3 – Composing and Performing Web-based Interactive Music 

108 
 

straightforward in some cases. However, there is no existing JavaScript framework for real-time 
spectral processing, and it is complicated to write every spectral processor from a native 
AudioWorklet class. The audio buffering and the FFT module usage in this work can be further 
generalized for such a JavaScript framework for audio developers. Since our work aims to provide 
intuitive tools for artists and non-professional audio developers, we use a VPL JSPatcher and a DSL 
Faust that are closer to the music domain and are likely more acceptable for these people. 

Most of the audio DSLs are optimized for audio buffer manipulations that are calculations 
based on vectors (1-demensional arrays). It is an interesting challenge to find a way to process 
spectra on these DSLs, Max’s pfft~ approach – considering real/imaginary values as 2 audio 
channel and providing additional bin indexes – has been used for years in various music applications 
which proves its ability for spectral processor algorithm implementation. This is the main reason 
that we adopt the same approach. However, it still has some limitations. For example, as the 
spectrum is “flattened” to a stream of complex numbers that are given one after another, and the 
algorithm need to output the spectrum in the same order/format, we cannot use the information of a 
higher bin index to process data of a lower bin in a same frame, unless we introduce a 1-frame delay. 
In other words, with this approach, if some algorithms, typically pitch-shifters, need the information 
about the whole spectrum before being able to process it, they can only output the processed 
spectrum in the next frame which adds some latency.  

Compared to pfft~, Faust spectral processor is still in an experimental status and may needs 
further development for certain features. First, pfft~ contains a regular Max patcher that can mix 
audio-rate and control-rate data. For some values such as analysis result, it can be more efficient to 
store them as a control-rate variable rather than an audio-rate signal, while every variable in a Faust 
DSP is an audio-rate signal. Second, larger memory space is available via buffer~ object in pfft~, 
making it more flexible for complex data processing and analysis. It is hard to implement the same 
in Faust language. 

Nevertheless, Faust spectral processor with it’s the framework that we designed, is one of the 
first musician-oriented spectral processing solutions available on the web platform. Some examples 
are built for proof-of-concept purposes. A real-world use case will be presented in 4.4. 

3.3.6 Summary of Contributions 

We contributed various DSP tools based on Faust language that runs in JSPatcher: 

- Programs and applications: 
o Some of the features are included in JSPatcher’s main repository, see code written 

in following files: 
 Objects available in Faust patcher: 

https://github.com/Fr0stbyteR/jspatcher/blob/master/src/core/objects/Fau
st.tsx  

 Faust patcher analyzer: 
https://github.com/Fr0stbyteR/jspatcher/blob/master/src/core/patcher/Fa
ustPatcherAnalyser.ts  

 Other Faust box objects: 
https://github.com/Fr0stbyteR/jspatcher/tree/master/src/core/objects/faus
t  

o Compiled DSP objects written in Faust for JSPatcher are available in an 
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independent GitHub repository: https://github.com/jspatcher/package-dsp  
o The experimental Faust FFT DSP is added in faustwasm’s repository, see this file:  

https://github.com/grame-
cncm/faustwasm/blob/master/src/FaustFFTAudioWorkletProcessor.ts  

- Papers 
o The graph editor for Faust language was first presented and published in the 

International Functional Audio Stream (Faust) Conference 2020 (Ren, Pottier, et 
al., 2020); 

o The method for creating Faust-based JSPatcher objects was presented and 
published in the International Web Audio Conference 2022 (Ren, Letz, et al., 2022); 

o A paper on the Faust FFT DSP is submitted and accepted by the International Web 
Audio Conference 2024. 

3.4 Computer-aided Composition on the Web 

DSPs often provides parameters of which values can be changed in runtime to modify some 
internal state of the DSP, such as a gain controller’s volume or a oscillators frequency. However, it 
is hard to create music only with these low-level parameters because music often has more complex 
structures in both time and frequency domain. Higher-level conceptions and visual representations 
need to be used to describe and generate music, especially for algorithmic composition. 

To design such a CAC system for composers, abstractions of musical conceptions and the 
display of musical scores are two key features. OpenMusic, developed at IRCAM, shows the power 
of such a VPL in algorithmic composition with its composer-oriented design. The web environment, 
with its strong accessibility from device to device and flexibility from the UI perspective, is already 
a common platform for the low-code development system. It is likely to be highly suitable for a 
CAC system. High-quality digital musical scores can be dynamically rendered and displayed on a 
computer using the SVG (Scalable Vector Graphics) format. Libraries like VexFlow,108 Guido,109 
Verovio,110 or abcjs111 can render music scores on the web. However, not all of them provide an 
API to interactively deal with the musical structure (model) behind the score. The challenge we are 
facing is a need for a JavaScript-compatible musical model system that can: 

- Calculate and compose abstract music (like a MIDI file data structure), 
- Play via WAM synthesizers, 
- Be displayed as a musical score. 

Therefore, we created a JavaScript library called Sol for the calculation of different musical 
concepts. It aims to deal with the musical model issue in the web-based CAC system. Then, a 
WebAssembly version of Guido112  is used to render the score as it provides the AR (Abstract 
Representation) API to easily convert the musical model to the score. Finally, these features are 

 
108 https://www.vexflow.com/  
109 https://guido.grame.fr/  
110 https://www.verovio.org/  
111 https://www.abcjs.net/  
112 https://github.com/grame-cncm/guidolib  
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integrated as a package into JSPatcher.113 

3.4.1 Modeling Musical Concepts 

3.4.1.1 Pitch and Note 

The difference between a pitch and a note can be ambiguous. In our library, “note” means 
different “pitch classes” in an octave. A note can be A, B, C, D, E, F and G with any number of 
sharp or flat accidentals. 

Text strings can be used to construct a Note object. For example, “C###” “Db” or “Bx” are 
recognizable as “note C with 3 sharps” “note D with 1 flat” and “note B with double sharps.” 
Internally, the note name and the accidentals will be preserved and can be used for further 
calculation. Integer numbers can also be used to construct a note as the offset in semitones from 
note C, in this case, the note name and the accidentals will be determined automatically. 

Pitch is an extended Note object with additional octave information. It is then a more concrete 
concept as the frequency can be calculated. It is also possible to get a pitch from a frequency with 
an approximation of a semitone. The pitch’s offset follows the C4 ൌ  60 standard. 

Both Note and Pitch object supports some kinds of mathematical calculations. Adding or 
subtracting a number from a Pitch will change by semitones its offset. The offset difference can also 
be calculated between two Pitches For example, the following code creates a C4 pitch, by adding 
12 to get a C5 pitch, then by subtracting a C4 pitch to get 12. 

const pitch = new Pitch("C4"); 
pitch.add(12).toString(); // => "C5" 
// Now pitch is C5 
pitch.sub(new Pitch("C4")); // => 12 

The multiplication between a pitch and a number is supported to calculate an approximated 
pitch based on the current pitch as the fundamental frequency and a multiplication ratio. The division 
is also possible between the pitch and a number or another pitch to calculate a new pitch or the 
frequency ratio between them. For example, the following code creates a C3 pitch, by multiplying 
4 (to its frequency) to get 2 octaves higher pitch C5, then by multiplying 1.5 to get a perfect fifth 
higher. 

const pitch = new Pitch("C3"); 
pitch.mul(4).toString(); // => "C5" 
// Now pitch is C5 
pitch.mul(1.5).toString(); // => "G5" 

3.4.1.2 Interval 

Interval is the distance between two pitches, but it is more complex than just the number of 
semitones. With different note names and accidentals, the same distance, in equal temperament, can 
have different intervals such as diminished fourth and major third. Its calculation involves three 
properties: quality, degree and octave. 

 
113 https://github.com/jspatcher/package-cac  


